首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of NaCl and mannitol iso-osmotic stresses on calli issued from sugarcane cultivars (cvs.) R570, CP59-73 and NCo310 were investigated in relation to callus growth, water content, ion and proline concentrations. Callus growth and water content decreased under both stresses with the highest reduction under mannitol-induced osmotic stress. The ion concentration was drastically affected after exposure to NaCl and mannitol. Salt stress induced an increase in Na+ and Cl accumulation and a decrease in K+ and Ca2+ concentrations. Under mannitol-induced osmotic stress, K+ and Ca2+ concentrations decreased significantly while Na+ and Cl concentrations remained unchanged. Free proline accumulation occurred under both stresses and was more marked in stress-sensitive cv. than in stress-resistant one. Our results indicated that the physiological mechanisms operating at the plant cell level in response to salt- and osmotic-induced stress in sugarcane cvs. are different. Among the cvs., we concluded that the stress resistance is closely related to the maintain of an adequate water status and a high level of K+ and Ca2+ under both stresses and a low level of Na+ concentration in the presence of NaCl. Thus, sugarcane (Saccharum sp.) can be regarded as a Na+ excluder. We also provided evidence that proline accumulation is a stress-sensitive trait rather than a stress resistance marker.  相似文献   

2.
红豆草耐盐愈伤组织的筛选及植株再生   总被引:13,自引:3,他引:10  
将红豆草种子在含1.2%NaCl的MS培养基上萌发以消除盐敏感的幼苗,把存活的幼苗下胚轴切段在含1mg/L2,4-D、0.5mg/L6-BA及1.2%NaCl的MS培养基上诱导愈伤组织,通过连续筛选得到可耐受1.8%NaCl的愈伤组织,在有0.2mg/L NAA和1mg/L IAA存在下该愈伤组织分化出芽,待幼,待幼苗长至3cm左右时转至含2mg/LNAA和或IBA的1/2MS培养基上生根。对对照  相似文献   

3.
Callus and suspension cultures adapted to various concentrations of NaCl or mannitol were developed from the cultivated potato Solanum tuberosum cv. Desire. Growth of the calli was less inhibited by mannitol than by iso-osmotic concentrations of NaCl. Reduction of growth by both NaCl and mannitol was considerably lower in osmotically adapted calli than in non-adapted ones. Salt-adapted suspension cultures that grew in the medium to which they had been originally adapted had a shorter lag in growth as well as a shorter time required to achieve the maximum growth, as compared with non-adapted cells. Suspension cultures adapted to NaCl concentrations higher than 150 mM were obtained only after preadaptation to osmotic stress. Adaptation of these cells was found to be stable. Accumulation of Na+ was lower and level of K+ was more stable in osmotically adapted than in non-adapted calli, when both were exposed to salt. Potassium level in NaCl-adapted calli exposed to saline medium was lower than that in non-adapted calli in standard medium. The maximum of Cl and Na+ accumulation was reached at higher external salt concentration in salt-adapted than in non-adapted suspension cultures. In both callus and suspension cultures, Cl accumulated more than Na+. Potassium level decreased more in non-adapted than in NaCl-adapted suspension cultures. The decrease of osmotic potential in osmotically adapted calli exposed to mannitol and in salt-adapted calli and suspension cultures exposed to salt was correlated to the increase of the external concentration. Such a correlation was not found in osmotically adapted calli exposed to salt. Non-electrolytes were found to be the main contributors to the decrease is osmotic potential in both callus and suspension cultures.  相似文献   

4.
Summary If in vitro culture is to be used for evaluating the salt tolerance of tomato hybrids and segregant populations in a breeding programme, it is previously necessary to get quick and reliable traits. In this work, growth and physiological responses to salinity of two interspecific hybrids between the cultivated tomato (Lycopersicon esculentum Mill) and its wild salt-tolerant species L pennellii are compared to those of their parents. The leaf callus of the first subculture was grown on media amended with 0, 35, 70, 105, 140, 175 and 210 mM NaCl for 40 days. Relative fresh weight growth of callus in response to increased salinity in the culture medium was much greater in L pennellii than in the tomato cultivars, and greater in the hybrids than in the wild species. Moreover, the different salt tolerance degree of hybrids was related to that of female parents. At high salt levels, only Cl accumulation was higher in L pennellii than in tomato cultivars, whereas in the hybrids both Cl, and Na+ accumulation were higher than in their parents. Proline increased with salinity in the callus of all genotypes; these increases were much higher in the tomato cultivars than in L pennellii, and the hybrids showed a similar response to that of the wild species. Salt-treated callus of the tomato cultivars showed significant increases in valine, isoleucine and leucine contents compared to control callus tissue. In contrast, these amino acids in callus tissues of the wild species and hybrids showed a tendency to decrease with increasing salinity.  相似文献   

5.
Summary A cryopreservation process using encapsulation/dehydration was set up for apices sampled on in vitro plantlets of sugarcane. After dissection, apices were cultured for one day on standard medium and then encapsulated in medium with 3% alginate. Optimal conditions comprised preculture for 2 days in liquid medium with 250 g.l–1 sucrose, desiccation for 6 hours under the laminar flow or for 10–11 hours with silicagel followed by rapid freezing and slow thawing. Survival after freezing in liquid nitrogen ranged between 38 and 91% for the 5 varieties experimented. Cryopreservation did not modify the electrophoretic profiles for aminoleucine peptidases and amylases with plants of the variety Co 6415.Abbreviations BAP 6-benzylaminopurine - KIN Kinetin - EDTA ethylenediamine tetracetic acid - AMP aminoleucine peptidases - AMY amylases - RFLP restriction fragment length polymorphism  相似文献   

6.
Efficient plant regeneration was obtained from a cryopreserved embryogenic cell suspension of sugarcane established from leaf derived callus. Pregrowing the cells for three days in MS basal medium supplemented with 0.33 M sorbitol was essential to the process. The cells were cooled at a rate of 0.5°C/min to –40°C and then stored in liquid nitrogen. Thawing was carried out rapidly in water at +40°C, and the cells were then plated without washing onto filter paper discs placed on a semi-solid regeneration medium (MS basal + 3% sucrose + 0.13 mg/1 2,4-D +0.25 mg/1 BAP + 0.25 mg/1 kinetin + 0.25 mg/1 zeatin). The filter paper discs, along with the cells, were transferred to the same, fresh medium after five hours. After 24 hours the cells were scraped off, placed on fresh semi-solid medium and incubated at 28°C in the dark for two weeks before transfer to light. A regeneration efficiency of 92% was obtained (regenerated plants, expressed as a percent of unfrozen control). Plants regenerated from cryopreserved cells, and grown to maturity in the greenhouse, were morphologically identical to regenerated control plants.Abbreviations DMSO dimethyl sulfoxide - PEG polyethylene glycol - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP benzyl aminopurine - TTC 2,3,5-triphenyl tetrazolium chloride  相似文献   

7.
In vitro selection of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl was achieved using embryogenic suspension cultures of sweetpotato cv. Lizixiang and gamma-ray induced mutation. Cell aggregates from embryogenic suspension cultures of Lizixiang were irradiated with 80 Gy gamma-ray, and 1 week after irradiation they were cultured in a selective medium containing 342 mM NaCl for in vitro selection. A total of 276 plants were regenerated from the irradiated 2,783 cell aggregates by a two-step in vitro selection procedure. After the regenerated plants were propagated into plant lines on the basal medium, they were cultured on the medium supplemented with 86, 171, 257 and 342 mM NaCl, respectively, in order to evaluate their in vitro salt tolerance. Of them 18 plant lines showed significantly higher in vitro salt tolerance than control plants. Proline and superoxide dismutase (SOD) were more accumulated in these 18 plant lines than in control plants when both were exposed to NaCl. Salt tolerance of the 18 plant lines was further evaluated with Hoalgland solution containing different concentrations of NaCl in a greenhouse. The results indicated that 3 of them had significantly better growth and rooting ability than the remaining 15 plant lines and control plants at 171 mM NaCl.  相似文献   

8.
Somaclonal variants resistant to sugarcane mosaic virus (SCMV) were obtained from susceptible sugarcane cv PR62258 through somatic embryogenesis by increasing the number of subcultures of the embryogenic callus tissue in MS medium with 3 mg/L 2,4-dichlorophenoxyacetic acid. Transfers were made at 30-day intervals for 1, 2 or 3 subcultures. Two somaclones, namely AT626 and BT627, were selected by their resistance to SCMV. These subclones have maintained the resistance trait over seven years of testing in the field. In this report we identified the somaclonal SCMV resistant variants from the maternal line and the nonresistant somaclones, using the RAPD technique.  相似文献   

9.
Summary Two varieties of sugarcane, and nodulated and non-nodulated soybean isolines, were planted in a soil previously mixed with15N-labelled plant material. 45 days was allowed to elapse before planting, to permit initiation of organic matter mineralization. Plants were grown for 60 days, then harvested, dried, weighed and analysed for total N. Analysis of soil samples pre-incubated in the laboratory was carried out to evaluate ammonium and nitrate from added organic matter. Dry weights of the soybean isolines were similar, but total N was higher for the nodulated line. Both sugarcane varieties showed similar weight and total N. Nitrogen derived from applied organic matter (NdfOM) was higher in non-nodulated soybean than in all other plants. Although there is the possibility of different15N availabilities between species, nitrogen derived from fixation (Nfix) was calculated based on the15N enrichment of the non-nodulating soybean. Nfix was 72% for nodulating soybean and ranged from 19 to 39% for different parts of sugarcane plants, despite high levels of available-N. Nitrogen derived from soil was calculated by difference. NdfOM was lower in roots than in upper parts (leaves+stalks) of plants. Use of15N labelled organic matter seems a useful approach to the longer term measurement of N2-fixation.IAEA Project BRA/5/009-CENA.  相似文献   

10.
Salinity restricts crop productivity in many arid environments. Inadvertent selection for tolerance to osmotic stress may occur under cell or tissue culture conditions and could affect the performance of regenerated plants. The effect of NaCl on forage produced by alfalfa (Medicago sativa L.) plants regenerated from non-saline callus cultures was examined in this study. Plants of Regen-S, which was selected for improved callus growth and regeneration in non-saline cultures, had higher forage weight when grown on SHII medium at NaCl levels up to 100 mM compared to its parental cultivars, Saranac and DuPuits. Five additional original-regenerant plant pairs, each derived from non-saline callus cultures of different alfalfa plants, were evaluated in a solid (soil-like) substrate under saline and non-saline conditions. Weight of forage produced by rooted stem cuttings of regenerated plants was 33% higher at 50 mM NaCl compared to cuttings of explant donor plants. Self progenies from four of five regenerants had higher relative forage weight at 100 mM NaCl (percent of 0 NaCl treatment) than the original plants indicating increased NaCl tolerance.  相似文献   

11.
In vitro responses of embryogenic sugarcane (Saccharum officinarum L.; cv. CoC-671) calli stressed with different levels of NaCl (0.0, 42.8, 85.6, 128.3, 171.1, 213.9 or 256.7 mM) were studied. The results showed that a significant decrease in callus growth and cell viability occurred with ≥85.6 mM NaCl. Higher amounts of free proline and glycine betaine were accumulated in NaCl-stressed calli. Although the leached and retained Na+ contents increased, the retained K+ content decreased with increasing levels of NaCl. Such a mechanism implies that sugarcane can be considered as a Na+-excluder. The accumulation of salt ions and osmolytes could play an important role in osmotic adjustment in sugarcane cells under salt stress.  相似文献   

12.
The symptoms of the leaf scald disease can be reproduced in vitro through the inoculation of sugarcane tissue culture plantlets. The pathogen is detected in the inoculated plantlet and is maintained at the surface of the base of the plantlets grown in vitro. Two strains of X. albilineans belonging to different serovars and lysovars reacted like pathotypes. The importance of the plant incubation temperature is clearly demonstrated. Further, in vitro the disease goes through the same phase of latency as in the field.  相似文献   

13.
14.
甘蔗抗旱性生理生化鉴定指标   总被引:15,自引:1,他引:15  
利用因子分析和灰色关联度分析方法研究了甘蔗叶片相对含水量、膜脂过氧化代谢、活性氧代谢、光合参数及蔗茎产量性状等指标与抗旱性的关系.结果表明,干旱胁迫下甘蔗叶片的MDA含量和PMP明显提高,而RWC、SOD活性、Chl含量、Fv/Fm、Fv/Fo、△Fv/Ft、△Fv/Fo和蔗茎单茎重(SSW)8个抗旱性指标均显著降低.SSW与其它9个生理生化指标的相关性大小依次为PMP>SOD活性>MDA含量>RWC>Fv/Fo>Fv/Fm>Chl含量>Fv/Fo>Fv/Ft,其中,SSW与Fv/Fo和ΔFv/Ft相关性不显著.通过因子分析将10个甘蔗抗旱性指标用4个公共因子表示,累加方差贡献率达到92.08%.因子l主要是反映光合作用特性指标对甘蔗品种抗旱性起支配作用,因子2主要是反映叶片相对含水量及活性氧代谢指标对甘蔗品种抗旱性起支配作用,因子3和因子4分别只有SSW和Chl含量有较大载荷.灰色关联度分析表明,各抗旱性生理生化指标与SSW关联密切程度依次为Fv/Fm>PMP>Fv/Fo>RWC>MDA含量>SOD活性>ΔFv/Ft>Chl含量>Fv/Fo.  相似文献   

15.
The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.  相似文献   

16.
Summary The response of plant cells to salt stress was studied on embryo derived calli of rice (Oryza sativa L.) in order to identify cellular phenotypes associated with the stress. The feasability of selecting salt tolerant callus and its subsequent regeneration to plants was also studied. Callus was grown on agar-solidified media containing 0%, 1% and 2% (w/v) NaCl for 24 days. Parameters such as fresh weight, dry weight, soluble protein and proline content were measured. The callus growth decreased markedly with increasing NaCl concentration in the medium. The proline content was enhanced several fold in salt stressed calli. A prolonged exposure of callus to the salt environment led to discolouration and arrested growth in the majority of the calli and only a small number of callus cells maintained healthy and stable growth. These variants were subcultured every three weeks for a period of four months onto medium containing 1% NaCl to identify tolerant lines. At the end of the third cell passage, the tolerant calli were transferred to regeneration medium to regenerate plants. The regeneration frequency in the salt-selected lines was enhanced when compared to unselected lines.  相似文献   

17.
Long-term regeneration of sugarcane (Saccharum spp. hybrid and Saccharum spontaneum L.) callus cultures was achieved by selection of green callus on MS agar medium containing 0.5 mgl-1 picloram or 2,4-D. Newly initiated sugarcane callus cultures were a complex mixture of different tissue types including white, nonregenerative and green, regenerative tissues. The proportion of the tissue types changed as a function of time in culture, genotype, and amount and kind of auxin. Green callus on picloram media always regenerated green plants. Nine hybrids and ten wild relatives of sugarcane produced green calli on picloram media whereas only three hybrids were grown as green calli on 2,4-D media in long-term culture. Green calli were inoculated into liquid MS medium with 0.5 mgl-1 picloram for suspension culture. These cultures were totipotent after 19 months. For routine culture, we initiated callus cultures on modified MS medium with 3 mgl-1 2,4-D, then in two to three weeks we subcultured callus on MS medium with 0.5 mgl-1 picloram and selected for green callus. Green calli regenerated large numbers of green plants after more than four years.  相似文献   

18.
Rapid and efficient in vitro regeneration methods that minimise somaclonal variation are critical for the genetic transformation and mass propagation of commercial varieties. Using a transverse thin cell layer culture system, we have identified some of the developmental and physiological constraints that limit high-frequency regeneration in sugarcane leaf tissue. Tissue polarity and consequently the orientation of the explant in culture, size and developmental phase of explant, and auxin concentration play a significant role in determining the organogenic potential of leaf tissue in culture. Both adventitious shoot production and somatic embryogenesis occurred on the proximal cut surface of the explant, and a regeneration gradient, decreasing gradually from the basal to the distal end, exists in the leaf roll. Importantly, auxin, when added to the culture medium, reduced this spatial developmental constraint, as well as the effect of genotype on plant regeneration. Transverse sections (1-2 mm thick) obtained from young leaf spindle rolls and orienting explants with its distal end facing the medium (directly in contact with medium) are critical for maximum regeneration. Shoot regeneration was observed as early as 3 weeks on MS medium supplemented with alpha-naphthalenencetic acid (NAA) and 6-benzyladenine, while somatic embryogenesis or both adventitious shoot organogenesis and somatic embryogenesis occurred on medium with NAA and chlorophenoxyacetic acid. Twenty shoots or more could be generated from a single transverse section explant. These shoots regenerated roots and successfully established after transplanted to pots. Large numbers of plantlets can be regenerated directly and rapidly using this system. SmartSett, the registered name for this process and the plants produced, will have significant practical applications for the mass propagation of new cultivars and in genetic modification programs. The SmartSett system has already been used commercially to produce substantial numbers of plants of orange rust-resistant and new cultivars in Australia.  相似文献   

19.
NaCl胁迫下棉花体内 Na~+ 、K~+分布与耐盐性   总被引:9,自引:2,他引:7  
采用盐化土壤方法 ,选择苗期耐盐性较强的陆地棉品种枝棉 3号和中棉所 1 9及耐盐性较弱的品种泗棉 2号和苏棉 1 2号 ,研究了盐胁迫下棉苗体内 Na+、K+的运输和分配与耐盐性的关系。结果表明 ,耐盐品种根系具有一定的截留 Na+作用。棉花地上部盐分器官水平上的区域化分布特征明显 :2 0 0 mmol/L Na Cl胁迫下 ,枝棉 3号叶片中的 Na+含量显著低于泗棉 2号 ,茎及叶柄中的 Na+含量显著高于泗棉 2号 ;棉株地上部茎、叶柄、叶片中的 Na+含量分别由下而上逐渐减小 ,相同节位的茎、叶柄中的 Na+含量大于叶片 ,枝棉 3号更显著。1 0 0 mmol/L和 1 50 mmol/L Na Cl胁迫下 ,枝棉 3号和中棉所 1 9K+/Na+显著高于泗棉 2号和苏棉 1 2号。Na+在茎和叶柄中滞留和积累 ,根中的 K+向地上部选择性运输 ,以维持叶片中较高的 K+/Na+,是棉花耐盐性的一个重要特点  相似文献   

20.
Pollution of terrestrial surfaces and aquatic systems by hexavalent chromium, Cr(VI), is a worldwide public health problem. A chromium resistant bacterial isolate identified as Exiguobacterium sp. GS1 by 16S rRNA gene sequencing displayed high rate of removal of Cr(VI) from water. Exiguobacterium sp. GS1 is 99% identical to Exiguobacterium acetylicum. The isolate significantly removed Cr(VI) at both high and low concentrations (1–200 μg mL−1) within 12 h. The Michaelis–Menten K m and V max for Cr(VI) bioremoval were calculated to be 141.92 μg mL−1 and 13.22 μg mL−1 h−1, respectively. Growth of Exiguobacterium sp. GS1 was indifferent at 1–75 μg mL−1 Cr(VI) in 12 h. At initial concentration of 8,000 μg L−1, Exiguobacterium sp. GS1 displayed rapid bioremoval of Cr(VI) with over 50% bioremoval in 3 h and 91% bioremoval in 8 h. Kinetic analysis of Cr(VI) bioremoval rate revealed zero-order in 8 h. Exiguobacterium sp. GS1 grew and significantly reduced Cr(VI) in cultures containing 1–9% salt indicating high salt tolerance. Similarly the isolate substantially reduced Cr(VI) over a wide range of temperature (18–45  °C) and initial pH (6.0–9.0). The T opt and initial pHopt were 35–40  °C and 7–8, respectively. Exiguobacterium sp. GS1 displayed a great potential for bioremediation of Cr(VI) in diverse complex environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号