首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that physiologic levels of shear stress enhance endothelial repair. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate (Albuquerque et al., 2000, Am. J. Physiol. Heart Circ. Physiol. 279, H293–H302). However, the patterns and movements of β-actin filaments responsible for cell motility and translocation in human coronary artery endothelial cells (HCAECs) have not been previously investigated under physiologic flow. HCAECs transfected with β-actin-GFP were cultured on type I collagen-coated coverslips. Confluent cell monolayers were subjected to laminar shear stress of 12 dynes/cm2 for 18 h in a parallel-plate flow chamber to attain cellular alignment and then wounded by scraping with a metal spatula and subsequently exposed to a laminar shear stress of 20 dynes/cm2 (S-W-sH) or static (S-W-sT) conditions. Time-lapse imaging and deconvolution microscopy was performed during the first 3 h after imposition of S-W-sH or S-W-sT conditions. The spatial and temporal dynamics of β-actin-GFP motility and translocation during wound closure in HCAEC monolayers were analyzed under both conditions. Compared with HCAEC under S-W-sT conditions, our data show that HCAEC under S-W-sH conditions demonstrated greater β-actin-GFP motility, filament and clumping patterns, and filament arcs used during cellular attachment and detachment. These findings demonstrate intriguing patterns of β-actin organization and movement during wound closure in HCAEC exposed to physiological flow.  相似文献   

2.
Repair of the endothelium occurs in the presence of continued blood flow, yet the mechanisms by which shear forces affect endothelial wound closure remain elusive. Therefore, we tested the hypothesis that shear stress enhances endothelial cell wound closure. Human umbilical vein endothelial cells (HUVEC) or human coronary artery endothelial cells (HCAEC) were cultured on type I collagen-coated coverslips. Cell monolayers were sheared for 18 h in a parallel-plate flow chamber at 12 dyn/cm(2) to attain cellular alignment and then wounded by scraping with a metal spatula. Subsequently, the monolayers were exposed to a laminar shear stress of 3, 12, or 20 dyn/cm(2) under shear-wound-shear (S-W-sH) or shear-wound-static (S-W-sT) conditions for 6 h. Wound closure was measured as a percentage of original wound width. Cell area, centroid-to-centroid distance, and cell velocity were also measured. HUVEC wounds in the S-W-sH group exposed to 3, 12, or 20 dyn/cm(2) closed to 21, 39, or 50%, respectively, compared with only 59% in the S-W-sT cells. Similarly, HCAEC wounds closed to 29, 49, or 33% (S-W-sH) compared with 58% in the S-W-sT cells. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate. These results suggest that physiological levels of shear stress enhance endothelial repair.  相似文献   

3.
We previously demonstrated that laminar shear stress enhances human coronary artery endothelial cell (HCAEC) wound closure via the mechanisms of cell spreading and migration. Because cell-cell junctional proteins such as vascular endothelial cell cadherin (VE-cadherin) are critical to cell-cell adhesion and motility, we tested the hypothesis that modulation of VE-cadherin expression under shear stress may be linked to this enhancement in wound closure. HCAEC monolayers were preconditioned to attain cellular alignment by shearing at 12 dynes/cm(2) for 18 hr in a parallel-plate flow chamber. Subsequently, they were divided into the following three groups: (i) control; (ii) treated with anti-cadherin-5 antibody; or (iii) treated with the calcium chelating agent EGTA. Next, the monolayers were wounded with a metal spatula and resheared at 20 dynes/cm(2) or left static. Time-lapse imaging was performed during the first 3 hr after imposition of these conditions. Immunocytochemistry or Western blot analyses for VE-cadherin expression were performed on all wounded monolayers. Deconvolution microscopy, three-dimensional cell-cell junctional reconstruction images, and histogram analyses of interendothelial junction signal intensities were performed on cells at the wound edge of a monolayer. Under shear, HCAEC demonstrated increased VE-cadherin immunofluorescence and protein expression despite an enhancement in wound closure compared with static conditions. In separate experiments, application with anti-cadherin-5 antibody or treatment with EGTA attenuated VE-cadherin expression and further enhanced wound closure compared with control shear and all static conditions. In addition, the pattern of VE-cadherin localization with these treatments became more intracellular and nuclear in appearance. These findings of changes in this junctional adhesion protein expression and localization may further our understanding of laminar shear stress-induced endothelial repair in the coronary circulation.  相似文献   

4.
Integrins- and cytoskeletal-associated focal adhesion proteins may participate in the process of endothelial wound closure, but their relationship in these wounds and in the presence of shear forces has not been defined. The goal in this study was to test the hypotheses that (1) modulation of beta(1)-integrin in human coronary artery endothelial cells (HCAEC) would alter endothelial wound closure under shear stress, and (2) beta(1)-integrin association with vinculin would be necessary for mediating this closure. HCAEC monolayers were pre-conditioned to attain alignment by shearing at 12 dynes/cm(2) for 18 h in a parallel-plate flow chamber. Subsequently, they were divided into three groups: (a) control, (b) treated with anti-beta(1)-integrin adhesion blocking antibody, or (c) treated with anti-beta(1)-integrin adhesion promoting antibody. Next, the monolayers were wounded with a metal spatula, and re-sheared at 20 dynes/cm(2) or left static. Time-lapse imaging and deconvolution microscopy were then performed for 3 h. Immunocytochemistry for beta(1)-integrin expression and vinculin was performed on all wounded monolayers. Under shear stress, vinculin localized to the ends of stress fibers, while beta(1)-integrin took on an intracellular macroaggregate appearance. Treatment with anti-beta(1)-integrin adhesion blocking antibody enhanced wound closure, left the vinculin staining at the lamellipodial tips unchanged, but was associated with beta(1)-integrin staining at the lateral cell edges. Treatment with the anti-beta(1)-integrin adhesion promoting antibody retarded wound closure, increased vinculin staining at cell-cell junctions, and was associated with a fibrillar pattern of beta(1)-integrin staining. Modulation of beta(1)-integrin and changes in beta(1)-integrin and vinculin localization may further our understanding of laminar shear stress-induced endothelial repair in the coronary circulation.  相似文献   

5.
Fluid shear stress stimulation induces endothelial cells to elongate and align in the direction of applied flow. Using the complementary techniques of photoactivation of fluorescence and fluorescence recovery after photobleaching, we have characterized endothelial actin cytoskeleton dynamics during the alignment process in response to steady laminar fluid flow and have correlated these results to motility. Alignment requires 24 h of exposure to fluid flow, but the cells respond within minutes to flow and diminish their movement by 50%. Although movement slows, the actin filament turnover rate increases threefold and the percentage of total actin in the polymerized state decreases by 34%, accelerating actin filament remodeling in individual cells within a confluent endothelial monolayer subjected to flow to levels used by dispersed nonconfluent cells under static conditions for rapid movement. Temporally, the rapid decrease in filamentous actin shortly after flow stimulation is preceded by an increase in actin filament turnover, revealing that the earliest phase of the actin cytoskeletal response to shear stress is net cytoskeletal depolymerization. However, unlike static cells, in which cell motility correlates positively with the rate of filament turnover and negatively with the amount polymerized actin, the decoupling of enhanced motility from enhanced actin dynamics after shear stress stimulation supports the notion that actin remodeling under these conditions favors cytoskeletal remodeling for shape change over locomotion. Hours later, motility returned to pre-shear stress levels but actin remodeling remained highly dynamic in many cells after alignment, suggesting continual cell shape optimization. We conclude that shear stress initiates a cytoplasmic actin-remodeling response that is used for endothelial cell shape change instead of bulk cell translocation. atherosclerosis; cytoskeletal dynamics; endothelial cells; mechanotransduction  相似文献   

6.
Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC (BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either "high" (19 dyn/cm(2)) or "low" (3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.  相似文献   

7.
8.
Effects of pulsatile flow on cultured vascular endothelial cell morphology   总被引:17,自引:0,他引:17  
Endothelial cells (EC) appear to adapt their morphology and function to the in vivo hemodynamic environment in which they reside. In vitro experiments indicate that similar alterations occur for cultured EC exposed to a laminar steady-state flow-induced shear stress. However, in vivo EC are exposed to a pulsatile flow environment; thus, in this investigation, the influence of pulsatile flow on cell shape and orientation and on actin microfilament localization in confluent bovine aortic endothelial cell (BAEC) monolayers was studied using a 1-Hz nonreversing sinusoidal shear stress of 40 +/- 20 dynes/cm2 (type I), 1-Hz reversing sinusoidal shear stresses of 20 +/- 40 and 10 +/- 15 dynes/cm2 (type II), and 1-Hz oscillatory shear stresses of 0 +/- 20 and 0 +/- 40 dynes/cm2 (type III). The results show that in a type I nonreversing flow, cell shape changed less rapidly, but cells took on a more elongated shape than their steady flow controls long-term. For low-amplitude type II reversing flow, BAECs changed less rapidly in shape and were always less elongated than their steady controls; however, for high amplitude reversal, BAECs did not stay attached for more than 24 hours. For type III oscillatory flows, BAEC cell shape remained polygonal as in static culture and did not exhibit actin stress fibers, such as occurred in all other flows. These results demonstrate that EC can discriminate between different types of pulsatile flow environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flow-dependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.  相似文献   

10.
Complement activation may predispose to vascular injury and atherogenesis. The atheroprotective actions of unidirectional laminar shear stress led us to explore its influence on endothelial cell expression of complement inhibitory proteins CD59 and decay-accelerating factor. Human umbilical vein and aortic endothelial cells were exposed to laminar shear stress (12 dynes/cm(2)) or disturbed flow (+/- 5 dynes/cm(2) at 1Hz) in a parallel plate flow chamber. Laminar shear induced a flow rate-dependent increase in steady-state CD59 mRNA, reaching 4-fold at 12 dynes/cm(2). Following 24-48 h of laminar shear stress, cell surface expression of CD59 was up-regulated by 100%, whereas decay-accelerating factor expression was unchanged. The increase in CD59 following laminar shear was functionally significant, reducing C9 deposition and complement-mediated lysis of flow-conditioned endothelial cells by 50%. Although CD59 induction was independent of PI3-K, ERK1/2 and nitric oxide, an RNA interference approach demonstrated dependence upon an ERK5/KLF2 signaling pathway. In contrast to laminar shear stress, disturbed flow failed to induce endothelial cell CD59 protein expression. Likewise, CD59 expression on vascular endothelium was significantly higher in atheroresistant regions of the murine aorta exposed to unidirectional laminar shear stress, when compared with atheroprone areas exposed to disturbed flow. We propose that up-regulation of CD59 via ERK5/KLF2 activation leads to endothelial resistance to complement-mediated injury and protects from atherogenesis in regions of laminar shear stress.  相似文献   

11.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   

12.
Shear stress induced stimulation of mammalian cell metabolism   总被引:19,自引:0,他引:19  
A flow apparatus has been developed for the study of the metabolic response of anchorage-dependent cells to a wide range of steady and pulsatile shear stresses under well-controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/cm(2), and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. This study demonstrates that shear stress in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress.  相似文献   

13.
Zeng Y  Sun HR  Yu C  Lai Y  Liu XJ  Wu J  Chen HQ  Liu XH 《Cytokine》2011,53(1):42-51
The migration of endothelial cells (ECs) plays critical roles in vascular physiology and pathology. The receptors CXCR1 and CXCR2, known as G protein-coupled receptors which are essential for migratory response of ECs toward the shear stress-dependent CXCL8 (interleukin-8), are potential mechano-sensors for mechanotransduction of the hemodynamic forces. In present study, the mRNA and protein expression of CXCR1 and CXCR2 in EA.hy926 cells was detected by RT-PCR and Western blot analysis under three conditions of laminar shear stress (5.56, 10.02 and 15.27 dyn/cm(2)) respectively. Using a scratched-wound assay, the effects of CXCR1 and CXCR2 were assessed by the percentage of wound closure while CXCR1 and CXCR2 were functional blocked by the CXCL8 receptor antibodies. The results showed that the mRNA and protein expression of CXCR1 and CXCR2 was both upregulated by 5.56 dyn/cm(2) laminar shear stress, but was both downregulated by 15.27 dyn/cm(2). The wound closure was inhibited significantly while cells were treated with those antibodies in all the conditions. It was suggested that CXCR1 and CXCR2 are involved in mediating the laminar shear stress-induced EC migration. Taken together, these findings indicated that CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced EC migration. Understanding this expanded mechanism of laminar shear stress-induced cell migration will provide novel molecular targets for therapeutic intervention in cancer and cardiovascular diseases.  相似文献   

14.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

15.
We examined the hypothesis that certain actin binding proteins might be upregulated by laminar shear stress (LSS) and could contribute to endothelial wound healing. Analysis of mRNA expression profiles of human umbilical vein endothelial cells under static and LSS-exposed conditions provided a list of LSS-induced actin binding proteins including synaptopodin (SYNPO) whose endothelial expression has not been previously reported. Additional studies demonstrated that SYNPO is a key mediator of endothelial wound healing because small interfering RNA-mediated suppression of SYNPO attenuated wound closure under LSS whereas overexpression of exogenous SYNPO enhanced endothelial wound closure in the absence of LSS. This study suggests that LSS-induced actin binding proteins including SYNPO may play a critical role in the endothelial wound healing stimulated by LSS.  相似文献   

16.
In response to externally applied shear stress, cultured endothelial monolayers develop prominent, axially-aligned, microfilamentous bundles, termed "stress fibers" (Dewey: Journal of Biomechanical Engineering 106:31-35, 1984; Franke et al.: Nature 81:570-580, 1984; Franke et al.: Klin. Wochenschr 64:989-992, 1986; Wechezak et al.: Laboratory Investigation 53:639-647, 1985). It is unclear, however, whether similar stress fibers develop in noncontiguous endothelial cells and whether these structures are necessary for adherence of individual cells under shear stress. It also is unknown what alterations occur in microtubules, intermediate filaments, and focal contacts as a consequence of shear stress. In this study, endothelial cells, free of intercellular contact, were exposed to 93 dynes/cm2 for 2 hr. With the aid of specific labeling probes and interference reflection microscopy, the distributional patterns of microfilaments, microtubules, intermediate filaments, and focal contacts were examined. Following shear stress, microfilament bundles and their associated focal contacts were concentrated in the proximal (relative to flow direction) cell regions. In contrast, microtubules were distributed uniformly within cell contours. Intermediate filaments displayed only an occasional tendency for accumulation at proximal edges. When cells were shear-tested in the presence of cytochalasin B to inhibit microfilament assembly, considerable cell loss occurred. Following inhibition of tubulin polymerization, no increase was observed in the percentage of cells lost due to shear over nontreated controls. Nocodazole-treated cells, however, were characterized by prominent stress fibers throughout the cell. These results indicate that stress fiber and focal contact reorganization represent major responses in isolated endothelial cells exposed to shear stress and that these cytoskeletal structures are necessary for adherence.  相似文献   

17.
Exposure to shear stress has been shown to alter the expression of a number of surface components of cultured endothelial cells (EC). However, relatively few studies have examined the status of human EC surface proteins after prolonged flow, more closely corresponding to the steady state in vivo. Since the promoter region of glycoprotein (Gp) Ib alpha contains several copies of a putative shear stress response element, 5'-GAGACC-3', we investigated the response of cultured human umbilical vein EC (HUVEC) GpIb alpha to shear stress over a 72 h time period. In response to 30 dynes/cm2 of shear stress, total cell content of GpIb alpha protein was markedly increased above static levels at 7 and 24 h, as determined immunohistochemically. Western blot analysis of whole cell lysates after 24, 48, and 72 h of shear treatment demonstrated a 2.4-, 4.1-, and 3.2-fold increase in total GpIb alpha protein, respectively. Cell surface protein expression of GpIb alpha increased 2.5-fold at 7 h, as measured by quantitative immunofluorescence, and remained at that level at 24 h. After 48 h of shear stress, cell surface GpIb alpha, GpIX, and GpV, analyzed by flow cytometric analysis, were further increased over the levels observed at 24 h. The increase in cell surface membrane expression of GPIb alpha at 24, 48, and 72 h was confirmed by immunoprecipitation of biotinylated surface proteins. No upregulation of GpIb alpha was noted after exposure to shear stress of 1-3 dynes/cm2. These observations imply that under steady-state arterial shear conditions endothelial expression of the GpIb complex is significantly greater than observed in static EC cultures, and raise the possibility of a more important role for this complex under flow, rather than static conditions.  相似文献   

18.
An apparatus to study the response of cultured endothelium to shear stress   总被引:6,自引:0,他引:6  
An apparatus which has been developed to study the response of cultured endothelial cells to a wide range of shear stress levels is described. Controlled laminar flow through a rectangular tube was used to generate fluid shear stress over a cell-lined coverslip comprising part of one wall of the tube. A finite element method was used to calculate shear stresses corresponding to cell position on the coverslip. Validity of the finite element analysis was demonstrated first by its ability to generate correctly velocity profiles and wall shear stresses for laminar flow in the entrance region between infinitely wide parallel plates (two-dimensional flow). The computer analysis also correctly predicted values for pressure difference between two points in the test region of the apparatus for the range of flow rates used in these experiments. These predictions thus supported the use of such an analysis for three-dimensional flow. This apparatus has been used in a series of experiments to confirm its utility for testing applications. In these studies, endothelial cells were exposed to shear stresses of 60 and 128 dynes/cm2. After 12 hr at 60 dynes/cm2, cells became aligned with their longitudinal axes parallel to the direction of flow. In contrast, cells exposed to 128 dynes/cm2 required 36 hr to achieve a similar reorientation. Interestingly, after 6 hr at 128 dynes/cm2, specimens passed through an intermediate phase in which cells were aligned perpendicular to flow direction. Because of its ease and use and the provided documentation of wall shear stress, this flow chamber should prove to be a valuable tool in endothelial research related to atherosclerosis.  相似文献   

19.
Fibroblast growth factor-2 (FGF2) is produced and released by endothelial cells and binds to heparan sulfate proteoglycans in the endothelial basement membrane (BM), an important FGF2 storage reservoir. Experimental and computational models of FGF2 binding kinetics to both cells and BM under static conditions are well established in the literature but remain largely unexplored under flow. We now examine BM-FGF2 binding kinetics in fluid flow conditions. We hypothesized that FGF2 binding to the endothelial BM would decrease as fluid shear stress increased. To investigate this, BM-FGF2 equilibrium, associative, and dissociative bindings were measured at various shear stresses. Surprisingly, FGF2 binding increased up to a physiological arterial shear stress of 25 dynes/cm2, after which it decreased to a level similar to the 1 dyne/cm2 condition. Both BM-FGF2 dissociation and BM binding site availability increased with flow, while association remained constant. This suggests that force-dependent FGF2 equilibrium binding varies with shear stress due to a combination of an increase in binding site availability and FGF2 dissociation with flow. This improved understanding of BM-FGF2 binding with flow enriches current knowledge of FGF2 binding kinetics under physiologic conditions, which may contribute to improved growth factor therapy development.  相似文献   

20.
Endothelial cells are exposed to different types of shear stress which triggers the secretion of subsets of proteins. In this study, we analyzed the secretome of endothelial cells under static, laminar, and oscillatory flow. To differentiate between endogenously expressed and added proteins, isolated human umbilical vein endothelial cells were labeled with l-Lysine-(13)C(6),(15)N(2) and l-Arginine-(13)C(6),(15)N(4). Shear stress was applied for 24 h using a cone-and-plate viscometer. Proteins from the supernatants were isolated, trypsinized, and finally analyzed using LC-MS/MS (LTQ). Under static control condition 395 proteins could be identified, of which 78 proteins were assigned to the secretome according to Swiss-Prot database. Under laminar shear stress conditions, 327 proteins (83 secreted) and under oscillatory shear stress 507 proteins (79 secreted) were measured. We were able to identify 6 proteins specific for control conditions, 8 proteins specific for laminar shear stress, and 5 proteins specific for oscillatory shear stress. In addition, we identified flow-specific secretion patterns like the increased secretion of cell adhesion proteins and of proteins involved in protein binding. In conclusion, the identification of shear stress specific secreted proteins (101 under different flow conditions) emphasizes the role of endothelial cells in modulating the plasma composition according to the physiological requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号