首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term (1969–2002) data record of biomass distribution of rotifers in Lake Kinneret is combined with previously published information on their metabolic activity and newly calculated population dynamics parameters to synthesize a model of their seasonal dynamics in Lake Kinneret. Nineteen rotifer species were recorded in routine samples collected in Lake Kinneret (Israel) in 7 offshore (deeper than 5 m), stations, at 12 discrete depths during 1969–2002. Organisms were sorted and counted (including external egg carrying females), biomass was measured and calculated for the entire lake stock (gw.w m−2; mg l−1). Rates of grazing, respiration and production were measured experimentally at three different temperature ranges. Results were extrapolated to the lake community for months with similar temperatures. Rotifera comprised 7% of total zooplankton biomass in Lake Kinneret whilst Cladocera and Copepoda 58 and 35% respectively. Rotifers were found to be more abundant during December–June and decline in summer months. Monthly (1969–2001) means indicated total grazing capacity of rotifers as 11%, respiration as 9% and production as 3.7% of the total zooplankton metabolic activity. Positive relations were indicated between rotifer and small bodied cladoceran numerical concentrations. Population growth models suggest that rotifers are not food limited in Lake Kinneret but that fish predation plays an important role in regulating abundance in spring-summer and fall.  相似文献   

2.
M. Gophen 《Hydrobiologia》1984,113(1):249-258
Monthly averages of standing stock wet biomass of zooplankton in Lake Kinneret (Israel) varied between 11 and 76 g m–2 during 1969–1981, with the exception of two months. Averaged contributions of different groups were: Cladocera 58%, Copepoda 35% and Rotifera 7%. Total standing crop wet biomass is highest during January–June, averages varied between 35 and 50 g m–2, and decreases during summer–fall (23–36 g m–2). The winter biomass of Cladocera fluctuated between 22 and 35 g m–2 and dropped to a range of 9–23 g m–2 in summer, whereas copepod biomass varied very little around an average of 18 g (ww) m–2 with the exception of low values from April to June. The stock biomass of Rotifera is relatively high during winter floods season (December-March) whilst in summer it is very low.Young stages of fish in Lake Kinneret feed mostly on zooplankton and zoobenthic forms. The most abundant fish in the Kinneret ecosystem, Mirogrex terraesanctae terraesanctae, also feed on zooplankton at the adult stage throughout the year, and herbivorous fish consume zooplankton during the summer when lake plankton resources are limited.The summer ecosystem of Lake Kinneret is characterised as a steady state type, in which the impact of the zooplankton-chain is of great importance. Increase of predation pressure on zooplankton by fish can disequilibrate the balanced trophic relations existing between nannoplankton production and zooplankton grazing capacity. Such a situation can lead to organics accumulation as nannoplankton blooms, resulting in water quality deterioration. Management options aimed at preventing collapse of zooplankton populations are discussed.  相似文献   

3.
The influence of zooplanktivorous fishes on the plankton community and water quality of Americana Reservoir, Brazil was studied experimentally in 4 floating enclosures during the dry seasons (July–September) of 1982 and 1983. Two enclosures were stocked with adult fish (Astyanax bimaculatus in 1982;A. fasciatus in 1983) at near maximal densities measured in the reservoir upper surface waters (35 m–2) and two were fish-free during each experiment lasting about one month. Marked differences were evident between the fish and fish-free enclosures after a 2–3 week period in each experiment, particularly with respect to water transparency, phytoplankton biomass, and zooplankton abundance as well as species and size composition. By the end of each experiment water transparencies were lower and phytoplankton biomass higher in the fish enclosures compared to those without fish. Also at that time Rotifera were the prominent zooplankters in the fish enclosures and Cladocera in the fish-free ones. Larger or more conspicuous species of Cladocera asDaphnia gessneri, D. ambigua, andMoina micrura were present in the fish-free enclosures but not in the fish enclosures. The interactions between fish predation, zooplankton grazing, phytoplankton biomass and water quality conditions are discussed in relation to eutrophication of a tropical aquatic ecosystem.  相似文献   

4.
Fernández-Rosado  M. J.  Lucena  J. 《Hydrobiologia》2001,455(1-3):157-170
Space-time distribution of the zooplankton (Rotifera, Cladocera and Copepoda) density along the central axis (horizontally and vertically) and the shores of La Concepción reservoir have been studied for one year. Results show that the distribution along the central axis and the shores follows similar patterns both in space and time. Rotifera and Copepoda mainly appear during the first part of the mixing period and Cladocera during stratification. Horizontal distribution is characterized by the occurrence of density gradients from the intake to the dam. Vertical distribution present density maximum at the Secchi depth during mixing and at two times Secchi depth, during stratification. Zooplankton distribution is related to physical-chemical and biotic factors.  相似文献   

5.
Forty-eight-hour experimental manipulations of zooplankton biomass were performed to examine the potential effects of zooplankton on nutrient availability and phytoplankton biomass (as measured by seston concentration) and C : N : P stoichiometry in eutrophic nearshore waters of Lake Biwa, Japan. Increasing zooplankton, both mixed-species communities and Daphnia alone, consistently reduced seston concentration, indicating that nearshore phytoplankton were generally edible. The zooplankton clearance rates of inshore phytoplankton were similar to rates measured previously for offshore phytoplankton. Increased zooplankton biomass led to increased concentrations of nutrients (NH4-N, soluble reactive phosphorus [SRP]). Net release rates were higher than those found in previous measurements made offshore, reflecting the nutrient-rich nature of inshore seston. Zooplankton nutrient recycling consistently decreased TIN : SRP ratios (TIN = NH4 + NO3 + NO2). This effect probably resulted from the low N : P ratios of nearshore seston, which were lower than those commonly found in crustacean zooplankton and thus resulted in low retention efficiency of P (relative to N) by the zooplankton. Thus, zooplankton grazing inshore may ameliorate algal blooms due to direct consumption but tends to create nutrient supply conditions with low N : P, potentially favoring cyanobacteria. In comparison with previous findings for offshore, it appears that potential zooplankton effects on phytoplankton and nutrient dynamics differ qualitatively in inshore and offshore regions of Lake Biwa. Received: September 4, 2000 / Accepted: January 23, 2001  相似文献   

6.
The influx of carbon into Lake Kinneret in 1971/1972 by Jordan zooplankton   总被引:1,自引:1,他引:0  
Moshe Gophen 《Hydrobiologia》1980,71(1-2):47-50
The carbon influx by Jordan zooplankton into Lake Kinneret was found to be negligible, compared to the total amount of organic carbon. The majority of zooplankton biomass (61%) is due to short pulses of Cladocera whilst 30% and 9% are due to Rotifera and Copepoda respectively.  相似文献   

7.
Spatial and seasonal patterns in phytoplankton and zooplankton communities of Lake St. Clair from June through September, 1984 are described. Phytoplankton biomass averages 586 µg l-1 with the Diatomae and Chrysophyceae predominating. Zooplankton biomass averages 663 µg l- with small bosminid Cladocera being the most abundant organisms. Lake St. Clair zooplankton biomass is second only to that of Lake Erie amongst the St. Lawrence Great Lakes. Biomass size spectra are typical in structure for mesotrophic lakes but low explained variance in the annual normalized spectrum is indicative of a perturbed system. Since 1972/1973 there appears to have been a slight decrease in zooplankton abundance in the lake accompanied by a shift from dominance of rotifers to dominance of cladocerans. We hypothesize that high flushing rate and seasonal variability coupled with contaminant loadings have resulted in a plankton community reduced in taxonomic diversity and dominated by small-bodied species.  相似文献   

8.
Olsson  Håkan  Blomqvist  Peter  Olofsson  Hans 《Hydrobiologia》1992,(1):147-155
Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l–1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l–1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.  相似文献   

9.
Long-term records (1969–1985) of zooplankton density in Lake Kinneret indicated significant reduction of biomass (Copepods, Cladocera, Rotifera) and production (Copepods, Cladocera). Nauplius and adult copepod densities decreased but those of copepodites did not change. Mesocyclops was suppressed more than the smaller Thermocyclops and males of both genera became more abundant relative to the larger females. Ratios of small/large Cladocera densities became higher. Numbers of total cladocerans were stable, and therefore reduction of Cladocera grazing capacity is assumed. The abundant Keratella spp. were reduced. It is likely that intensification of fish visual-attack-predation pressure shifted the size-class structure towards smaller adult copepods and cladocerans. Reduction of Keratella spp. and copepod nauplii was probably affected by increasing pressure of fish filter-feeders. Data on fish food consumption, feeding behaviour and fisheries management suggested their direct impact on long-term changes of zooplankton in Lake Kinneret.  相似文献   

10.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

11.
Juta Haberman 《Hydrobiologia》1996,338(1-3):113-123
L. Peipsi is one of the richest fish lakes in Europe. Planktivorous smelt dominates in the fish fauna. The abundance of zooplankton fluctuates between 43 600–2241 500 ind m–3, with the average 974 000 ind m–3, biomass ranges from 0,09–3,69 g m–3, with the average 1,86 g m–3. Since the 1960s the abundance of rotifers has risen considerably while the mean zooplankter weight (B/N) has decreased from 0.005 mg to 0.004 mg. Zooplankton production (herbivores 20.6, predators 1.8, whole zooplankton community 22.4 g C m–2 per period between May and October) can be considered high. Predatory zooplankton eats on an average 50% of the production of herbivorous zooplankton; about 50% of the whole zooplankton production (PFilt + Pred) reaches fishes. The production of herbivorous zooplankton constitutes 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain; the detrital food chain seems of little importance. About 6% of phytoplankton energy reaches fishes. The transformation of energy in the food web is efficient. On the basis of zooplankton L. Peipsi can be considered a moderately eutrophic or meso-eutrophic lake.  相似文献   

12.
Kim  Hyun-Woo  Joo  Gea-Jae 《Hydrobiologia》2000,438(1-3):171-184
The longitudinal distribution and seasonal dynamics of zooplankton were examined along a 200-km section of the middle to lower Nakdong River, Korea. Zooplankton was sampled twice a month from January 1995 to December 1997 at five sites in the main river channel. There was considerable longitudinal variation in total zooplankton abundance (ANOVA, p < 0.001). All major zooplankton groups (rotifers, cladocerans, copepodids and nauplii) increased significantly with distance downstream along the river. There also were statistically significant seasonal differences in zooplankton abundance at the sampling sites (ANOVA, p < 0.01). Zooplankton abundance was high in spring and fall and low in summer and winter. The seasonal pattern of rotifers was similar to that of total zooplankton. This reflected the fact that rotifers (Brachionus calyciflorus, B. rubens, Keratella cochlearis and Polyarthra spp.) strongly dominated the zooplankton community at all locations. Among the macrozooplankton, small-bodied cladocerans (e.g. Bosmina spp.) dominated; the abundance of large-bodied cladocerans (e.g. Daphnia) was negligible (0–5 ind. l–1). Among the environmental variables considered, partial residence time seemed to play the most important role in determining characteristics of the river zooplankton community.  相似文献   

13.
J. Easton  M. Gophen 《Hydrobiologia》2003,491(1-3):91-100
Diel vertical migration (DVM) behaviour is a predator avoidance mechanism observed within many zooplankton species in the presence of zooplanktivorous fish. A 24-h survey was carried out in June 1998 to investigate diel variation in the vertical distribution of fish, zooplankton and phytoplankton (chlorophyll) in Lake Kinneret, Israel. Fish revealed diel variation in vertical distribution but had no spatial overlap with zooplankton, and consequently no apparent influence on zooplankton dispersal. Zooplankton revealed some diel variation in distribution being affected by thermocline and oxycline position and movement of the internal the internal seiche wave. Cyclopoid species closely follow the movement of the seiche wave implying that, due to their greater motility, they are following conditions that are suitable to them. The Cladocera species and small rotifers only partly, which may be part of their phototaxic behaviour. Physical forces like convection, horizontal and vertical forcing probably have a role in contributing to a homogeneous distribution of the plankton by preventing stratification or interfering with the more motile zooplankton which may be attempting to migrate.  相似文献   

14.
The seasonal fluctuation in the zooplankton community of Azibo reservoir (Portugal), was studied from November 1986 till November 1987.Fifty-three species of Protozoa, Rotifera, Copepoda and Cladocera were found. The zooplankton community was numerically dominated by rotifers, which represented 66% of the total.The highest rotifer density was reached in the beginning of spring. It decreased after the cladocerans peaked in May.Copepods had two maxima, one in April and another one in September.Although protozoans rose to high densities during winter (1.07 × 105 ind m–3), their contribution to total biomass was small (2.03%).  相似文献   

15.
Based on the field studies conducted in August 2005 and 2007, the distributions of zooplankton structure and abundance, as well as chlorophyll content, in the Sheksna Reservoir are analyzed. A total of 107 zooplankton species have been found (46 Cladocera, 18 Copepoda, and 43 Rotifera), including 24 species (10 Cladocera, 2 Copepoda, and 12 Rotifera) new for the reservoir. In the surface layer of water, where blue-green algae concentrate, zooplankton abundance and biomass are 1.5–5 times lower and the zooplankton structure is simpler than in deeper layers. The highest zooplankton biomass (>3 g/m3) are observed in Lake Beloe and the upper area of the Sheksna section, while in the near-shore sites it did not exceed 1 g/m3. There are no significant changes in zooplankton abundance when compared to the abundance recorded at the end of the past century.  相似文献   

16.
Summary Short-term variations in the micro-, meso- and macrozooplankton communities at shelf and offshore stations in the vicinity of the Price Edward Islands were examined during April/May 1985 and 1986. Microzooplankton was dominated by copepod nauplii. Other holoplanktonic groups were represented in large numbers, while meroplanktonic larvae of benthic invertebrates were very scarce despite the large benthic population of the island shelf. Copepods dominated in terms of numerical abundance the meso- and macrozooplankton assemblage but cuphausiids were also very important in terms of biomass contribution. Dirunal vertical migrations were most pronounced for the euphausiids and the copepod Metridia gerlachei. The copepods Eucalanus longipes, Rhincalanus gigas and Microsetella sp. showed significant, but lesser, diurnal vertical migrations. A daylight decrease in zooplankton biomass was observed consistently on the island shelf, compared to the pattern found in deep-water. Data from daytime tows collected during April/May 1983 show that zooplankton biomass in the area increases with depth up to a stability level of about 50 mg/m3 (dry weight). It is suggested that an interaction between vertical migrations, surface Ekman drift and bottom topography results in zooplankton mass depletion by visual predators during daytime and replenishment during the night. The nocturnal advection of allochtonous zooplankton into the area may represent an input of food supply equivalent to as much as 2.2 times the local maximum phytoplankton production.  相似文献   

17.
Production, biomass and productivity of the microcrustacean zooplanktonpopulations of three low-land reservoirs, Tissawewa (eutrophic), Ridiyagama(moderately eutrophic), and Muruthawela (mesotrophic) in South-east SriLanka were studied. The temporal variation of zooplankton production wasstudied in Tissawewa on basis of fortnightly sampling on five fixed samplingstations for 2 years. Zooplankton production was relatively high, mainlybecause of high copepod production predominantly realised due to twocalanoid copepods, Phyllodiaptomus annae and Heliodiaptomus viduus. Abouthalf of the copepod production was contributed by the naupliar instarstages, whereas the contribution of the eggs was generally much smaller(<20%). In contrast, the cladoceran production consisted for ca50–70% of egg production. The results of this study werecompared with those from more than twenty other tropical and subtropicalwaterbodies reported in the literature by deriving empirical relationshipsbetween mean phytoplankton biomass and mean zooplankton biomass andproduction. Mean zooplankton biomass and annual zooplankton production werefound to be positively related to mean phytoplankton biomass, and meanphytoplankton biomass proved to be a good predictor of mean zooplanktonbiomass (r2 = 0.58) and a moderate good predictor ofannual zooplankton production (r2 = 0.43). However,the relationships between the mean phytoplankton biomass and zooplankton P/Bwere not significant neither for small-bodied and large-bodied cladoceransnor for copepods.  相似文献   

18.
Julian D. Olden 《Hydrobiologia》2000,436(1-3):131-143
Artificial neural networks are used to model phytoplankton succession and gain insight into the relative strengths of bottom-up and top-down forces shaping seasonal patterns in phytoplankton biomass and community composition. Model comparisons indicate that patterns in chlorophyll aconcentrations response instantaneously to patterns in nutrient concentrations (phosphorous (P), nitrite and nitrate (NO2/NO3–N) and ammonium (NH4–H) concentrations) and zooplankton biomass (daphnid cladocera and copepoda biomass); whereas lagged responses in an index of algal community composition are evident. A randomization approach to neural networks is employed to reveal individual and interacting contributions of nutrient concentrations and zooplankton biomass to predictions of phytoplankton biomass and community composition. The results show that patterns in chlorophyll aconcentrations are directly associated with P, NO2/NO3–N and daphnid cladocera biomass, as well as related to interactions between daphnid cladocera biomass, and NO2/NO3–N and P. Similarly, patterns in phytoplankton community composition are associated with NO2/NO3–N and daphnid cladocera biomass; however show contrasting patterns in nutrient– zooplankton and zooplankton–zooplankton interactions. Together, the results provide correlative evidence for the importance of nutrient limitation, zooplankton grazing and nutrient regeneration in shaping phytoplankton community dynamics. This study shows that artificial neural networks can provide a powerful tool for studying phytoplankton succession by aiding in the quantification and interpretation of the individual and interacting contributions of nutrient limitation and zooplankton herbivory on phytoplankton biomass and community composition under natural conditions.  相似文献   

19.
J. Green 《Hydrobiologia》1993,267(1-3):249-256
Abstract The zooplankton of 38 East African lakes has been analysed in terms of species richness and dominance. The conductivities of the lakes range from 48 to 72 500 µS cm–1 20 °C. The lakes generally contain more species of rotifers than either Copepoda or Cladocera. The number of species of rotifers begins to decline at a conductivity below 1000 µS cm–1, and falls to 2 or 3 species above 3000 µS cm–1. Similar reductions occur in the Copepoda and Cladocera.Many species can be dominant at conductivities below 1000 µS cm–1, but the range is restricted progressively with increasing salinity. The dominant species of Rotifera, Copepoda and Cladocera change independently along the salinity gradient, but there are indications of interactions and modifications of community structure by predation and competition.  相似文献   

20.
Phyto/zooplankton composition, chlorophyll a, and some water quality parameters were investigated in a spring-originated pond in Central Anatolia between February 2001 and January 2002. Water temperature, pH, dissolved oxygen, Secchi depth, total and calcium hardness, nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen, total phosphorus, and soluble reactive phosphorus levels were analyzed. A total of 49 species belonging to Bacillariophyceae, Chlorophyceae, Cyanophyceae, Cryptophyceae, and Dinophyceae were identified. The highest phytoplankton abundance was found in August, whereas the lowest was determined in January. Phytoplankton abundance increased from February to August and declined in the following months. The Bacillariophyceae were dominant in the phytoplankton community. A total of 21 species of Rotifera, 2 species of Cladocera, and 1 genus of Copepoda were found. The zooplankton community was dominated by Rotifera. The highest abundance of zooplankton was recorded in July and the lowest value in November. The annual mean concentration of chlorophyll a was measured as 1.90 μg l−1. In spite of these eutrophic levels (mean values of total phosphorus and nitrate-nitrogen: 0.069 mg P l−1 and 0.68 mg N l−1), phytoplankton cannot grow satisfactorily because of the short water retention time (0.6 day−1). The shallowness of the pond together with the low phytoplankton biomass and the high concentrations of nutrients are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号