首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory syncytial virus (RSV) bronchiolitis triggers a strong innate immune response characterized by excessive neutrophil infiltration which contributes to RSV induced pathology. The cytokine IL-17A enhances neutrophil infiltration into virus infected lungs. IL-17A is however best known as an effector of adaptive immune responses. The role of IL-17A in early immune modulation in RSV infection is unknown. We aimed to elucidate whether local IL-17A facilitates the innate neutrophil infiltration into RSV infected lungs prior to adaptive immunity. To this end, we studied IL-17A production in newborns that were hospitalized for severe RSV bronchiolitis. In tracheal aspirates we measured IL-17A concentration and neutrophil counts. We utilized cultured human epithelial cells to test if IL-17A regulates RSV infection-induced IL-8 release as mediator of neutrophil recruitment. In mice we investigated the cell types that are responsible for early innate IL-17A production during RSV infection. Using IL-17A neutralizing antibodies we tested if IL-17A is responsible for innate neutrophil infiltration in mice. Our data show that increased IL-17A production in newborn RSV patient lungs correlates with subsequent neutrophil counts recruited to the lungs. IL-17A potentiates RSV-induced production of the neutrophil-attracting chemokine IL-8 by airway epithelial cells in vitro. Various lung-resident lymphocytes produced IL-17A during early RSV infection in Balb/c mice, of which a local population of CD4 T cells stood out as the predominant RSV-induced cell type. By removing IL-17A during early RSV infection in mice we showed that IL-17A is responsible for enhanced innate neutrophil infiltration in vivo. Using patient material, in vitro studies, and an animal model of RSV infection, we thus show that early local IL-17A production in the airways during RSV bronchiolitis facilitates neutrophil recruitment with pathologic consequences to infant lungs.  相似文献   

2.
3.
Severe bronchiolitis following respiratory syncytial virus (RSV) infection occurs in only a small subset of infected infants and the basis for variations in disease severity is not understood. Innate immune responses to RSV are mediated by TLR-4, and the (299)Gly and (399)Ile alleles of the TLR4 gene have been linked epidemiologically with increased severity of RSV disease in children. We hypothesized that cellular immune responses to RSV mediated by these variant forms of the receptor are defective relative to responses mediated via the common form of the receptor. Human bronchial epithelial cells were transfected with TLR4 constructs encoding the common TLR4 gene sequence ((299)Asp/(399)Thr), or the (299)Gly or (399)Ile alleles, and cytokine responses to in vitro RSV challenge were analyzed in the different transfected cells. Follow-up studies compared RSV-induced responses in PBMC from children expressing these same TLR4 genotypes. Human bronchial epithelial expressing (299)Gly or (399)Ile displayed normal levels of intracellular TLR4 but failed to efficiently translocate the receptor to the cell surface. This was associated with reduced NF-kappaB signaling post-TLR4 engagement, reduced production of IFNs, IL-8, IL-10, IL-12p35, IL-18, and CCL8, and the absence of acute-phase TNF-alpha. These findings were mirrored by blunted PBMC responses to RSV in children expressing the same TLR4 variants. Compromised first-line defense against RSV at the airway-epithelial surface of children expressing these TLR4 variants may thus confer increased susceptibility to severe infections with this virus.  相似文献   

4.
Macrophages are the major target cell population of the obligate intracellular parasites LEISHMANIA: Although polymorphonuclear neutrophil granulocytes (PMN) are able to internalize Leishmania promastigotes, these cells have not been considered to date as host cells for the parasites, primarily due to their short life span. In vitro coincubation experiments were conducted to investigate whether Leishmania can modify the spontaneous apoptosis of human PMN. Coincubation of PMN with Leishmania major promastigotes resulted in a significant decrease in the ratio of apoptotic neutrophils as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low m.w. DNA fragments, and annexin V staining. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in PMN. The inhibition of PMN apoptosis depended on viable parasites because killed Leishmania or a lysate of the parasites did not have antiapoptotic effect. L. major did not block, but rather delayed the programmed cell death of neutrophils by approximately 24 h. The antiapoptotic effect of the parasites could not be transferred by the supernatants, despite secretion of IL-8 by PMN upon coculture with L. major. In vivo, intact parasites were found intracellularly in PMN collected from the skin of mice 3 days after s.c. infection. This finding strongly suggests that infection with Leishmania prolongs the survival time of neutrophils also in vivo. These data indicate that Leishmania induce an increased survival of neutrophil granulocytes both in vitro and in vivo.  相似文献   

5.
The obligate intracellular bacterial pathogen Chlamydia pneumoniae (Cp) is responsible for a range of human diseases, including acute respiratory infection. Although experimental intratracheal infection with Cp results in a massive recruitment of neutrophil granulocytes (polymorphonuclear neutrophils (PMN)), the role of these cells in the defense against Cp is unclear. In this study the interactions of PMN with Cp were investigated. In vitro coincubation experiments showed that human granulocytes were able to internalize Chlamydia in an opsonin-independent manner. Importantly, phagocytosed Cp were not killed; the ingested bacteria survived and multiplied within PMN. Although uninfected granulocytes became apoptotic within 10 h, infected PMN survived up to 90 h. Coincubation with Cp significantly decreased the ratio of apoptotic PMN, as detected by morphological analysis, annexin V, and TUNEL staining. The observed antiapoptotic effect was associated with a markedly lower level of procaspase-3 processing and, consequently, reduced caspase-3 activity in infected PMN. LPS was found as a major, but not exclusive, component responsible for the observed antiapoptotic effect. Chlamydia LPS affected PMN apoptosis both by acting directly on the cells and by inducing the autocrine production of the antiapoptotic cytokine IL-8. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, Cp can extend the life span of neutrophil granulocytes, making them suitable host cells for survival and multiplication within the first hours/days after infection.  相似文献   

6.
黄升海  魏伟  云云 《微生物学报》2009,49(2):239-245
【目的】Toll样受体(Toll-like receptor,TLR)7和3是两个重要的模式识别受体,分别通过识别病毒的单股和双股RNA而活化细胞。呼吸道合胞病毒(RSV)能被TLR7和TLR3识别。在RSV感染致病的早期阶段,对肺中TLR7、TLR3的表达动力学和表达丰度进行研究,并探讨其表达与肺部炎症反应的关系。【方法】我们以活RSV滴鼻感染BALB/c鼠诱导急性肺炎,在RSV感染0,1,4,8,16和24h的不同时间点,用半定量RT-PCR方法检测鼠肺TLR7、TLR3的mRNA表达,用western blot法检测核转录因子NF-κB的蛋白表达,HE染色观察肺的病理学改变。【结果】我们发现,RSV感染早期能快速上调TLR7和TLR3的基因表达水平,与正常组相比,其升高有显著性差异,并与RSV感染之间存在时间依赖关系;TLR7的反应(RSV感染1h)早于TLR3(RSV感染4 h)。肺中NF-κB在RSV感染的4 h即可被活化。RSV介导的TLR7和TLR3早期转录反应与RSV肺炎的严重程度是平行的。【结论】TLR7和TLR3确实可通过识别病毒RNA参与RSV肺炎的发生和发展,表明感染的器官在识别病毒感染和激发前炎反应时,可能经由多个TLRs。这将对开发制剂用以调节治疗性TLR配体的活性具有重要意义。  相似文献   

7.
TLRs are key elements of the pathogen recognition mechanism used by the host immune system. Neutrophils express almost all TLRs, and activation of TLRs, such as TLR2 and TLR4, has been shown to induce the production of proinflammatory cytokines and chemokines, potentially linking innate and adaptive immunity. In the present study, we investigated whether activation of TLRs induces neutrophil production of MCP-1/CCL2, a key mediator involved in the development of adaptive immunity. Activation of neutrophils with LPS, lipoteichoic acid, or N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-Cys-[S]-Ser-[S]-Lys did not induce significant MCP-1 production and release; however, the Th1 cytokine IFN-gamma dramatically up-regulated MCP-1 production in cells activated with each TLR ligand. The majority of MCP-1 was released between 24 and 48 h of culture, indicating that this is a late event. The effect of IFN-gamma appeared to be due to its antiapoptotic effect, but not priming effect, revealing a biological consequence of IFN-gamma-induced neutrophil survival. Although IFN-gamma failed to protect neutrophils from cell death at a higher dose of LPS, the p38 MAPK inhibitor SB203580 dramatically increased MCP-1 release and neutrophil survival at this LPS concentration. Thus, p38 MAPK plays a previously uncharacterized role in neutrophil function. Taken together, our results indicate that human neutrophils produce MCP-1 in a Th1 microenvironment and this neutrophil-derived MCP-1 potentially amplifies the development of Th1 adaptive responses.  相似文献   

8.
Iwasaki A 《Autophagy》2007,3(4):354-356
Plasmacytoid dendritic cells (pDCs) detect viruses in the acidified endosomes via Toll-like receptors (TLRs) upon endocytosis of virions. Yet, pDC responses to certain single-stranded RNA viruses occur only following live viral infection. In our recent study, we presented evidence that the recognition of such viruses by TLR7 requires autophagy. We speculate that the requirement for autophagy in viral recognition reflects the necessity for transportation of cytosolic viral replication intermediates into the lysosome where TLR7 is activated. In addition, autophagy was found to be required for pDCs to produce type I interferon (IFN) in response to both ssRNA and dsDNA viruses. These results indicated that autophagy plays a key role in mediating virus detection and IFNalpha secretion in pDCs, and suggest that cytosolic replication intermediates of ssRNA viruses serve as pathogen signatures recognized by TLR7.  相似文献   

9.
10.
Neutrophils undergo rapid constitutive apoptosis that is delayed by a range of pathogen- and host-derived inflammatory mediators. We have investigated the ability of the nucleotide ATP, to which neutrophils are exposed both in the circulation and at sites of inflammation, to modulate the lifespan of human neutrophils. We found that physiologically relevant concentrations of ATP cause a concentration-dependent delay of neutrophil apoptosis (assessed by morphology, annexin V/To-Pro3 staining, and mitochondrial membrane permeabilization). We found that even brief exposure to ATP (10 min) was sufficient to cause a long-lasting delay of apoptosis and showed that the effects were not mediated by ATP breakdown to adenosine. The P2 receptor mediating the antiapoptotic actions of ATP was identified using a combination of more selective ATP analogs, receptor expression studies, and study of downstream signaling pathways. Neutrophils were shown to express the P2Y11 receptor and inhibition of P2Y11 signaling using the antagonist NF157 abrogated the ATP-mediated delay of neutrophil apoptosis, as did inhibition of type I cAMP-dependent protein kinases activated downstream of P2Y11, without effects on constitutive apoptosis. Specific targeting of P2Y11 could retain key immune functions of neutrophils but reduce the injurious effects of increased neutrophil longevity during inflammation.  相似文献   

11.
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88 −/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.  相似文献   

12.
Respiratory syncytial virus (RSV) is a common cause of infection that is associated with a range of respiratory illnesses, from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children <1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected to contribute to RSV disease. Toll-like receptors (TLRs) activate innate and acquired immunity and are candidates for playing key roles in the host immune response to RSV. Leukocytes express TLRs, including TLR2, TLR6, TLR3, TLR4, and TLR7, that can interact with RSV and promote immune responses following infection. Using knockout mice, we have demonstrated that TLR2 and TLR6 signaling in leukocytes can activate innate immunity against RSV by promoting tumor necrosis factor alpha, interleukin-6, CCL2 (monocyte chemoattractant protein 1), and CCL5 (RANTES). As previously noted, TLR4 also contributes to cytokine activation (L. M. Haynes, D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, and R. A. Tripp, J. Virol. 75:10730-10737, 2001, and E. A. Kurt-Jones, L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg, Nat. Immunol. 1:398-401, 2000). Furthermore, we demonstrated that signals generated following TLR2 and TLR6 activation were important for controlling viral replication in vivo. Additionally, TLR2 interactions with RSV promoted neutrophil migration and dendritic cell activation within the lung. Collectively, these studies indicate that TLR2 is involved in RSV recognition and subsequent innate immune activation.  相似文献   

13.
Using flow cytometry, we investigated the effect of TLR agonists on human polymorphonuclear neutrophil (PMN) apoptosis in whole blood. LPS (TLR4), peptidoglycan (TLR2), R-848 (TLR7/8), and CpG-DNA (TLR9) were equally effective at delaying spontaneous apoptosis of PMN, while PamCSK4 (TLR1/2), macrophage-activating lipopeptide-2 (TLR2/6), flagellin (TLR5), and loxoribine (TLR7) were less effective or inactive. TLR agonists found to delay apoptosis also extended the functional life span of PMN. Analysis of signaling pathways revealed that the antiapoptotic effect of TLR agonists required NF-kappaB and PI3K activation. Furthermore, analysis of intact cells by flow cytometry showed that TLR agonists delaying PMN apoptosis increased phosphorylation of Akt, a major target of PI3K. This effect was associated with a PI3K-dependent increase in heat shock protein 27 phosphorylation, which has been reported to play a key role in PMN survival. Finally, the TLR-induced delay in PMN apoptosis was associated with increased levels of Mcl-1 and A1, which are antiapoptotic members of the Bcl-2 family. These effects were reversed by PI3K and NF-kappaB inhibitors, respectively. TLR activation also led to PI3K-dependent phosphorylation of the proapoptotic protein Bad. Taken together, our results strongly suggest a role of NF-kappaB and PI3K in TLR-induced PMN survival, leading to modulation of Bcl-2 family molecules.  相似文献   

14.
The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1-9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-alpha, IL-6, CXCL-10, and IL-10, and the expression of IFN-beta. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-beta, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal.  相似文献   

15.
Recognition of ligands by toll-like receptor (TLR) 2 requires interactions with other TLRs. TLRs form a combinatorial repertoire to discriminate between the diverse microbial ligands. Diversity results from extracellular and intracellular interactions of different TLRs. This paper demonstrates that TLR1 and TLR2 are required for ara-lipoarabinomannan- and tripalmitoyl cysteinyl lipopeptide-stimulated cytokine secretion from mononuclear cells. Confocal microscopy revealed that TLR1 and TLR2 cotranslationally form heterodimeric complexes on the cell surface and in the cytosol. Simultaneous cross-linking of both receptors resulted in ligand-independent signal transduction. Using chimeric TLRs, we found that expression of the extracellular domains along with simultaneous expression of the intracellular domains of both TLRs was necessary to achieve functional signaling. The domains from each receptor did not need to be contained within a single contiguous protein. Chimeric TLR analysis further defined the toll/IL-1R domains as the area of crucial intracellular TLR1-TLR2 interaction.  相似文献   

16.
Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9 -/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9 -/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.  相似文献   

17.
18.
3-nitrotyrosine (NO2Tyr), an L-tyrosine derivative during nitrative stress, can substitute the COOH-terminal tyrosine of alpha-tubulin, posttranslationally altering microtubular functions. Because infection of the cells by respiratory syncytial virus (RSV) may require intact microtubules, we tested the hypothesis that NO2Tyr would inhibit RSV infection and intracellular signaling via nitrotyrosination of alpha-tubulin. A human bronchial epithelial cell line (BEAS-2B) was incubated with RSV with or without NO2Tyr. The release of chemokines and viral particles and activation of interferon regulatory factor-3 (IRF-3) were measured. Incubation with NO2Tyr increased nitrotyrosinated alpha-tubulin, and NO2Tyr colocalized with microtubules. RSV-infected cells released viral particles, RANTES, and IL-8 in a time- and dose-dependent manner, and intracellular RSV proteins coprecipitated with alpha-tubulin. NO2Tyr attenuated the RSV-induced release of RANTES, IL-8, and viral particles by 50-90% and decreased alpha-tubulin-associated RSV proteins. 3-chlorotyrosine, another L-tyrosine derivative, had no effects. NO2Tyr also inhibited the RSV-induced shift of the unphosphorylated form I of IRF-3 to the phosphorylated form II. Pre-exposure of the cells to NO(2) (0.15 ppm, 4 h), which produced diffuse protein tyrosine nitration, did not affect RSV-induced release of RANTES, IL-8, or viral particles. NO2Tyr did not affect the potential of viral spreading to the neighboring cells since the RSV titers were not decreased when the uninfected cells were cocultured with the preinfected cells in NO2Tyr-containing medium. These results indicate that NO2Tyr, by replacing the COOH-terminal tyrosine of alpha-tubulin, attenuated RSV infection, and the inhibition appeared to occur at the early stages of RSV infection.  相似文献   

19.
Toll-like receptors (TLRs) have been implicated in the regulation of host responses to microbial Ags. This study characterizes the role of TLR4 in the innate immune response to intrapulmonary administration of Haemophilus influenzae in the mouse. Two different strains of mice efficiently cleared aerosolized H. influenzae concurrent with a brisk elaboration of IL-1beta, IL-6, TNF-alpha, macrophage-inflammatory protein (MIP)-1alpha, and MIP-2 in bronchoalveolar lavage and a corresponding mobilization of intrapulmonary neutrophils. Congenic strains of mice deficient in TLR4 demonstrated a substantial delay in clearance of H. influenzae with diminished IL-1beta, IL-6, TNF-alpha, MIP-1alpha, and MIP-2 in bronchoalveolar lavage and a notable absence of intrapulmonary neutrophils. In TLR4-expressing animals, but not TLR4-deficient animals, TNF-alpha and MIP-1alpha expression was up-regulated in epithelial cells of the conducting airway in response to H. influenzae which was preceded by an apparent activation of the NF-kappaB pathway in these cells based on the findings of decreased overall IkappaB and an increase in its phosphorylated form. This study demonstrates a critical role of TLR4 in mediating an effective innate immune response to H. influenzae in the lung. This suggests that the airway epithelia might contribute to sensing of H. influenzae infection and signaling the innate immune response.  相似文献   

20.
BACKGROUND: Apoptosis of neutrophil granulocytes is an important determinant of the resolution of inflammation. Apoptotic neutrophils undergo specific alterations in their receptor profiles. These alterations are likely to contribute to the characteristic functional silencing of the dying cells. METHODS: By flow cytometry and fluorescence microscopy, we analyzed the ganglioside GM1, a lipid raft marker, with respect to its surface expression on neutrophil and eosinophil granulocytes. Apoptosis was monitored by morphological changes and by the binding of annexin V-phycoerythrin (AxV-PE). RESULTS: GM1, which was stained by the cholera toxin subunit B, was found only on neutrophil granulocytes; eosinophil granulocytes did not bind cholera toxin subunit B. GM1 was lost from the surfaces of neutrophils before AxV-PE binding (early apoptosis). Surprisingly, GM1 reappeared during the late stages of apoptosis, although without functional consequences. GM1 was found on the cell surface and in intracellular membranes, whereas CD16 was found only at the cell surface. CONCLUSIONS: Loss of surface GM1 is a new marker for the detection of the aging of neutrophils. Its loss precedes the binding of AxV-PE of neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号