首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Mounzih  B Griffond 《Peptides》1992,13(3):423-427
The endocrine dorsal bodies (DB) of Helix aspersa are innervated by axons from the central nervous system, which establish synapse-like structures (SLS) with the DB cells. Previous immunocytochemical studies suggested the presence of FMRFa-like substances in nerves of the DB area and in SLS. This paper reports on biochemical attempts undertaken in order to investigate the nature of these substances: the use of HPLC and RIA confirms the presence of three FMRFa-like peptides in the DB-containing connective tissue among which one is probably the FMRFa itself.  相似文献   

2.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

3.
1. The innervation of the hindgut, rectal valve, rectum and rectal papillae of the adult blowfly, Calliphora erythrocephala, was studied by means of light and electron microscopic immunocytochemistry, using antibodies against the neuropeptides proctolin and FMRFamide. 2. Branches from the abdominal nerves reaching the posterior portion of the gut were found to contain mostly neurosecretory type axons and to innervate the muscle coat of all hindgut structures studied. 3. Some of the axons found in these nerve branches innervating the gut display proctolin- others FMRFamide-like immunoreactivity. Both types of peptidergic axons were found to have abundant terminals in the muscle coat of the hindgut, rectum and rectal valve and in the medulla of the rectal papillae. 4. It is clear that two separate peptidergic systems derived from the abdominal ganglion are supplying the hindgut structures, and, possibly, they use proctolin- and FMRFamide-like peptides respectively as their transmitters or modulators.  相似文献   

4.
Scanning electron microscopy and immunohistochemical staining for FMRFamide-like peptides revealed that the stomatogastric nervous system of Galleria mellonella (Lepidoptera : Pyralidae) includes 5 ganglia: the frontal ganglion with 4, the hypocerebral ganglion with 2, the ingluvial ganglion with 2–4, and each of the paired proventricular ganglia with 6–8 immunoreactive perikarya. Immunoreactivity was also found in axons to and within the corpora cardiaca, in the nerves connecting stomatogastric ganglia, as well as in 8 gastric nerves that extend along longitudinal midgut muscles. Adhesion of corpora cardiaca to the hypocerebral ganglion and partial merging and shortening of gastric nerves were the only conspicuous changes of the stomatogastric system that occurred during metamorphosis.  相似文献   

5.
Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated alphatubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps.  相似文献   

6.
T Tervo  A Palkama 《Acta anatomica》1978,102(2):164-175
The innervation of the rabbit cornea was investigated histochemically and electron-microscopically with special reference to the autonomic nerves. Both formaldehyde- and glyoxylic-acid-induced fluorescence methods revealed adrenergic nerves in the stroma; a few fibres were also observed between the basal epithelial cells near the limbus. Acetylcholinesterase- (AChE-) positive nerves were found both in the stroma and in the epithelium, whereas nonspecific cholinesterase (NsChE) activity appeared only in the stromal nerves. Under the electron microscope, both AChE and NsChE activities were observed to be located in the axon membranes. A weak NsChE reaction also appeared in the Schwann cells. When the specimens fixed with KMnO4 were examined under the electron microscope, most nerve fibres did not contain any special axoplasmic structures, although several axons contained mitochondria. Moreover, two vesicle-containing axon types were found in the stromal nerves; axons with small granular vesicles and axons containing small agranular vesicles. In the epithelium, two types of fibres were observed; one type containing only mitochondria while the other showed both agranular vesicles and mitochondria.  相似文献   

7.
FMRFamide-like immunoreactivity was studied in the argasid tick Ornithodoros parkeri and the ixodid tick Dermacentor variabilis using immunocytochemistry based on the peroxidase-antigeroxidase method. FMRFamide-like immunoreactive cells are widely distributed in various regions of the tick synganglion including protocerebral, cheliceral, stomodeal, palpal, pedal I–IV, and opisthosomal regions in both species. However, there is one layer of immunoreactive cells located on the dorsal surface of the postoesophageal part of the synganglion that is found only in D. variabilis. Besides the immunoreactivity within the cell body and its axons, the neuropile and the neural lamella (the extracellular sheath of the synganglion) are rich in immunoreactive materials. Some coxal muscles are innervated by the FMRFamide-like immunoreactive processes of the nerve from the pedal ganglion.  相似文献   

8.
Summary Three neuronal systems of the pond snail Lymnaea stagnalis were immunocytochemically investigated at the ultrastructural level with the unlabeled peroxidase-antiperoxidase technique. Preliminary electrophysiological and cell-filling investigations have shown that a cluster of neurons which reacts positively with an antiserum against the molluscan cardio-active peptide FMRFamide, sends axons to the penis retractor muscle. In this muscle anti-FMRF-amide (aFM) positive axons form neuro-muscular synapses with (smooth) muscle fibers. The morphological observations suggest the aFM immunoreactive system to be involved in peptidergic neurotransmission. In the right parietal ganglion a large neuron (LYAC) is penetrated by aFM positive axons which form synapse-like structures (SLS) with the LYAC. The assumption that the SLS represent the morphological basis for peptidergic transmission is sustained by the observation that iontophoretical application of synthetic FMRFamide depolarizes the LYAC. The axons of a group of pedal anti-vasopressin (aVP) positive cells run in close vicinity to the cerebral ovulation (neuro-)-hormone producing cell system (CDC system) Synapses or SLS between the two systems were not observed. The fact that (bath) application of arg-vasopressin induces bursting in the CDC, may indicate that the vasopressin-like substance of the aVP cells is released non-synaptically.  相似文献   

9.
The bladder of adult female rats receives ~16,000 axons (i.e., is the target of that many ganglion neurons) of which at least half are sensory. In nerves containing between 40 and 1200 axons cross-sectional area is proportional to number of axons; >99% of axons are unmyelinated. A capsule forms a seal around nerves and ends abruptly where nerves, after branching, contain ~10 axons. A single blood vessel is present in many of the large nerves but never in nerves of <600 axons. The number of glial cells was estimated through the number of their nuclei. There is a glial nucleus profile every 76 axonal profiles. Each glial cell is associated with many axons and collectively covers ~1,000 μm of axonal length. In all nerves a few axonal profiles contain large clusters of vesicles independent of microtubules. The axons do not branch; they alter their relative position along the nerve; they vary in size along their length; none has a circular profile. All the axons are fully wrapped by glial cells and never contact each other. The volume of axons is larger than that of glial cells (55%–45%), while the surface of glial cell is twice as extensive as that of axons; there are ~2.27 m2 of axolemma and ~4.60 m2 of glial cell membrane per gram of nerve. Of the mitochondria of a nerve ~3/4 are in axons and ~1/4 in glial cells.  相似文献   

10.
Ultrastructure of the nerve apparatus in the arteries of the brain base has been studied in cats. The structure of peri- and adventitial nerves has been investigated electron microscopically. Three types of efferent axons and four types of synaptic vesicles (small agranular and granular, large granular, large electron opaque vesicles) have been revealed. Vesicle-containing axons in the brain arteries approach the external smooth muscle cells of about 80 nm. Terminal axonal dilatations possessing direct and mediated connections with muscular cells of the middle tunica have been revealed.  相似文献   

11.
Summary The ultrastructure of the corneal nerves of the rat was studied in tissue fixed by immersion in and by perfusion with glutaraldehyde-containing fixatives. Of the four types of axonal terminal identified in the nerves, those with the features of adrenergic and cholinergic terminals were confined to the nerves at the limbus and were concentrated in the perivascular plexuses. The remaining two types of terminal were found on axons located in all parts of the cornea and on both intraepithelial axons and axons in the stromal nerves. Of these, one contained the numerous mitochondria which occur in the terminals of axons associated with known mechanoreceptors and the second contained variable and often small numbers of both clear and large dense-cored vesicles. While most of the mitochondria-containing terminals were seen in nerves located near the periphery, vesicle-containing terminals were numerous in all of the nerves, and especially in those in the avascular cornea. In material fixed by immersion in glutaraldehyde-paraformaldehyde, the vesicle-containing terminals appeared to be dilated, but in material fixed by perfusion there was little evidence of any increase in the diameter of the axons in the terminal regions. The structure of the terminals was compared with that of the terminals of axons identified in the nerves of the skin and the urinary tract and the differences in the vesicle content of the terminals to those reported in other studies of the corneal nerves was related to the use of different fixation procedures. The possibility that axons possessing such terminals are identical with the beaded axons and both the cholinesterase-positive and fluorescent axons demonstrated in light microscopical studies of the corneal nerves is discussed, and the widespread distribution of the axons in the cornea is equated with the hypothesis that they are afferent in nature and represent the peripheral receptors for pain impulses.  相似文献   

12.
1. Localization of FMRFamide-like immunoreactivity was examined in the ventral ganglion of the fly Sarcophaga bullata using the indirect immunofluorescent method. 2. There are six large cells in the thoracic ganglion which are highly immunoreactive at all stages of development. 3. During metamorphosis the thoracic FLI neurons shift their position from ventrolateral to mid-ventral position and their axons terminate and elaborate a highly immunoreactive dorsal neural sheath. 4. It is suggested that the dorsal neural sheath may function as a neurohaemal organ from which FMRFamide-like substances may be released into the haemolymph to act as neurohormones.  相似文献   

13.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth.  相似文献   

14.
Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for β-III-tubulin (β3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.  相似文献   

15.
FMRFamide-like immunoreactivity was detected histochemically in the sea scallopPlacopecten magellanicus. Most immunoreactivity was concentrated in the cerebral, pedal, and parietovisceral ganglia, particularly in the cortical cell bodies and in their fibers which extend into the central neuropile. Whole-mount immunofluorescence studies were used to localize concentrations of immunoreactive cells on the dorsal and ventral surfaces of each ganglion. Immunoreactivity was also detected in nerves emanating from the ganglia. Strong immunoreactivity was localized in peripheral organs, including the gut and gills of juvenile and adult scallops. Weak immunoreactivity was detected in the gonads, heart, and adductor muscle of the adults. A broad FMRFamide-like immunoreactive band of 2.5–8.2 kDa was detected by Western blotting of acetone extracts of the parietovisceral ganglia. In the presence of protease inhibitors, two FMRFamide-like immunoreactive bands (7.2–8.2 kDa and >17 kDa) were obtained. Neither of these bands comigrated with the FMRFamide standard. It is concluded that peptides of the FMRFamide family are probably regulators of numerous central and peripheral functions inP. magellanicus.  相似文献   

16.
Summary The intramuscular nerves and myoneural junctions in the rat rectus superior, medialis and inferior muscles from 10 hours to about 10 days after section of the trigeminal and oculomotor nerves were studied with the electron microscope. Two different kinds of myoneural junctions are to be observed; one type derives from myelinated nerves and is similar to the ordinary myoneural junctions (motor end plates) of other striated skeletal muscles, while the other type derives from unmyelinated nerves, is smaller in size and has many myoneural synapses distributed along a single extrafusal muscle fibre.Section of the trigeminal nerve caused no changes in the myoneural synapses. After section of the oculomotor nerve degenerative changes occur in both the myelinated and unmyelinated nerves and in both types of myoneural junctions. In the axon terminals of both the myelinated and unmyelinated nerves the earliest changes are to be observed 10 to 15 hours after section of the nerve. First, swelling of the axoplasm, fragmentation of microtubules and microfilaments and swelling of mitochondria takes place, somewhat later agglutination of the axonal vesicles and mitochondria. The axon terminals are separated from the postsynaptic muscle membrane by hypertrophied teloglial cells about 24 hours after section of the nerve. The debris of the axon terminals is usually digested by the teloglial cells within 42 to 48 hours in both types of myoneural junction.Changes in the postsynaptic membrane are observed in the myoneural junctions of the unmyelinated nerves as disappearance of the already earlier irregular infoldings, whereas no changes take place in the infoldings of the motor end plates. The postsynaptic sarcoplasm and its ribosomal content increase somewhat.The earliest changes occur along unmyelinated axons 10 to 15 hours and along myelinated axons 15 to 24 hours after nerve section. The unmyelinated axons are usually totally digested within 48 hours, whereas the myelinated axons took between 48 hours and 4 days to disappear. The degeneration, fragmentation and digestion of the myelin sheath begin between 24 and 42 hours and still continues 10 days after the operation.The results demonstrate that in the three muscles studied structures underlying the physiologically well known double innervation of the extraoccular muscles are all part of the oculomotor system.We are grateful to Professor Antti Telkkä, M. D. Head of the Electron Microscope Laboratory, University of Helsinki, for permission to use the facilities of the laboratory.  相似文献   

17.
Summary Two cytochemical techniques were used at the ultrastructural level to study the distribution of specific axon types to different intrarenal structures in the dog. Using the chromaffin reaction to distinguish catecholaminergic fibres from other axon populations, it was found that the renal cortex of the dog is supplied only by catecholaminergic nerves. Immunostaining for tyrosine hydroxylase (TH) labelled all of the intracortical nerves, and 20% to 25% of these profiles also contained dopa decarboxylase (DDC)-immunoreactivity, indicating they were dopaminergic rather than noradrenergic. Both DDC-positive and DDC-negative axons were seen in close association (80 nm) with blood vessels and juxtaglomerular cells as well as tubular epithelial cells. The distribution of TH- and DDC-immunoreactive nerves in the renal cortex is compatible with existing functional evidence indicating that both dopaminergic and noradrenergic nerves are involved in the regulation of renal blood flow, tubular reabsorption and renin release.  相似文献   

18.
Hill SR  Orchard I 《Peptides》2003,24(10):1511-1524
The gut tissues and associated nervous system of the African migratory locust, Locusta migratoria, were found to contain FMRFamide-like immunoreactive (FLI) material throughout the five larval instars and 2 weeks into the adult stage in both males and females. FMRFamide-like immunoreactivity associated with the locust gut was described using camera lucida techniques. FMRFamide-like immunoreactivity is observed in the frontal connectives, recurrent nerve, and oesophageal nerves; projections from the ingluvial ganglion onto the anterior midgut, and from the proctodeal nerve onto the hindgut and posterior midgut; in the neuropils of the frontal ganglion, hypocerebral ganglion and ingluvial ganglia; 30 cell bodies in the frontal ganglion; multipolar sensory cells on the foregut; and endocrine-like cells in the gastric caecae and midgut. Radioimmunoassay (RIA) was used to determine the quantities of FLI material in foreguts, gastric caecae, anterior and posterior midguts, and hindgut of first-fifth instar larvae, 1-3- and 14-17-day male and female adult locusts. As expected, as the tissue size (assessed by total protein content) increases, so does the amount of FLI material in each tissue. Normalizing for tissue size reveals significant differences in FLI content among the stages for each tissue tested. Reversed phase-high pressure liquid chromatography (RP-HPLC) followed by RIA has identified four groups of FLI fractions present in the gut, and different members of these groups are present in the various gut tissues.  相似文献   

19.
The spatiotemporal distribution of neural cell adhesion molecule (N-CAM) in the retinotectal system of adult goldfish was assessed by immunofluorescence using the monoclonal antibody (Mab) D3 against chick N-CAM. In immunoblots with extracts of cell surface membranes of fish brains, Mab D3 recognized a prominent band at 170K and a weak band at 130K (K = 10(3) Mr). N-CAM immunofluorescence on cells was restricted to the marginal growth zones of the retina and the tectum and, in normal fish, to the youngest axons from the new ganglion cells of the peripheral retinal margin. In fish with previously transected optic nerves (ONS), Mab D3 staining was found transiently on all axons from the site of the cut into the retinorecipient layers of the tectum, but disappeared from these axons 450 days after ONS. Growing retinal axons in vitro exhibited N-CAM immunofluorescence throughout their entire extent, including their growth cones. Glial cells cultured from regenerating optic nerves were, however, unlabeled. These data are consistent with the idea that N-CAM is involved in adhesive interactions of growing axons. The temporally regulated expression of N-CAM on the new retinal axons may contribute to the creation of the age-related organization of the axons in the retinotectal pathway of fish.  相似文献   

20.
Lange AB 《Peptides》2001,22(2):229-234
The midgut of 5th instar male African migratory locust, Locusta migratoria, was found to contain endocrine-like cells that stained positively for FMRFamide-like immunoreactivity. These cells have cell bodies which are tear-drop in shape with processes extending from the cell body. FMRFamide-like immunoreactivity has been described in similar cells in adult midgut tissue [16]. The midgut tissue content of FMRFamide-like immunoreactivity is differentially distributed throughout various regions of the midgut (gastric cecae, anterior and posterior midgut) in 5th instar and varied ages of adult. FMRFamide-like immunoreactivity in midgut tissues decreases significantly by 24 h of starvation, whereas locustatachykinin I-like immunoreactivity does not decrease until 48 h of starvation indicating that there are differential timing effects of these two peptide families on midgut content. HPLC analysis, combined with RIA, of different regions of the midgut tissue from both fed and starved locusts revealed that the relative proportions of the members of the two peptide families vary depending upon the feeding state. These results indicate that the contents of these endocrine-like cells appears to be differentially influenced by the feeding state of the locust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号