首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative specificities of members of the G alpha q family of GTP-binding proteins were tested for their ability to activate different phosphoinositide-specific phospholipase C (PI-PLC) beta isozymes. Cos-7 cells were transfected with cDNA corresponding to G alpha q, G alpha 11, G alpha 14, and G alpha 16. Most of the recombinant protein was bound to the cell membrane and these membranes were washed to elute endogenous PI-PLC activity. The membrane preparation was reconstituted with purified preparations of the PI-PLC beta isozymes and guanosine 5'-O-thiotriphosphate (GTP gamma S)-stimulated enzyme activity was measured. All four proteins of the G alpha q family were found to stimulate PI-PLC beta 1, with G alpha q and G alpha 11 being most efficient. On the other hand, G alpha 16 was found to most effectively activate PI-PLC beta 2, while G alpha q, G alpha 11, and G alpha 14 showed less stimulation. Specific anti- G alpha 16 antibody blocked the stimulation of both PI-PLC beta 1 and PI-PLC beta 2 in the enriched membrane fraction. We conclude that there is specificity in the interaction of different members of the Gq family with different PI-PLC beta effectors. This specificity may be important in generating tissue- or receptor-specific responses in vivo.  相似文献   

2.
3.
Two forms (I and II) of phospholipase C, specific for phosphatidyl inositol 4,5-bisphosphate, were resolved from bovine retinal rod outer segment (ROS) cytosol by DEAE-Sepharose column chromatography. The two isozymes showed reproducible differences in their catalytic properties in spite of similar substrate specificity and hydrolyzed specifically inositol 4,5-bisphosphate in a Ca(2+)-dependent fashion. In the presence of deoxycholate (DOC), pH optima were at 6.5 and 7.0 for phospholipase C I and II, respectively. Maximal phosphatidylinositol 4,5-bisphosphate hydrolysis rates were obtained at 10(-4) and 10(-5)M Ca2+ for phospholipase C I and II, respectively. Treatment with cAMP-dependent protein kinase did not alter either isozyme activity. Further purification steps were prevented by the extreme lability of the isozymes.  相似文献   

4.
We previously reported (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1986) Biochem. Biophys. Res. Commun. 141, 137-144) that cytosolic fractions of bovine brain contain two phosphoinositide-specific phospholipase C (PLC), PLC-I and PLC-II. In this paper purification procedures and properties of these two forms of enzyme are presented. The two enzymes exhibit similar substrate specificity. Both PLC-I and PLC-II catalyze the hydrolysis of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Yet, they respond differently to activators such as Ca2+ and nucleotides and to inhibitory divalent metal ions such as Hg2+ and Cd2+. In addition, they are immunologically distinct as evidenced by the fact that monoclonal antibodies directed against either enzyme do not cross-react with the other. Their activities are Ca2+ concentration-dependent. PIP and PIP2 are better substrates than PI for both PLC-I and PLC-II when the concentration of Ca2+ is in the micromolar range. Study of the effect of nucleotides, such as GTP, guanosine 5'-(3-O-thio)triphosphate, guanyl-5'-yl imidodiphosphate, and ATP, on the activities of both isozymes with PIP2 as substrate revealed that (i) in the absence of Ca2+, PLC-I activity is enhanced by 400% by either GTP or ATP. In the presence of Ca2+ (a condition in which PLC-I exhibits much higher activity), the activation factor by nucleotides is diminished to approximately 140%. (ii) without Ca2+, PLC-II activity is too low to measure with or without added nucleotides. The effect of nucleotides on PLC-II activity is trivial in the presence of Ca2+. In addition, studies on the effect of metal ions on PI hydrolysis showed that the activities of both PLC-I and PLC-II are not affected by 50 microM of Mg2+, Mn2+, Ca2+, or Ni2+. However, Hg2+, Zn2+, and Cu2+ inhibited both PLC-I and PLC-II, with PLC-II exhibiting much higher sensitivity to these metal ions than PLC-I. For example, the value of I0.5 for Hg2+ inhibition is 0.2 microM for PLC-II and 1 microM for PLC-I. Cd2+ selectively inhibits PLC-II with a I0.5 value of 5 microM. Most of these metal ions' inhibition can be overcome by either dithiothreitol or EDTA.  相似文献   

5.
Two peaks of phosphoinositide-specific phospholipase C (PI-PLC) activity were resolved when guinea pig uterus cytosolic proteins were chromatographed on a DEAE-Sepharose column. The first peak of enzyme activity eluting from the DEAE-Sepharose column (PI-PLC I) was further purified to homogeneity, whereas the second peak of enzyme activity was enriched 300-fold. PI-PLC I migrated as a 62-kDa protein on sodium dodecyl sulfate-polyacrylamide gels. Antibodies prepared against PI-PLC I failed to react with PI-PLC II. PI-PLC I hydrolyzed all three phosphoinositides, exhibiting a greater Vmax for phosphatidylinositol 4,5-bisphosphate greater than phosphatidylinositol 4-phosphate greater than phosphatidylinositol. Hydrolysis of phosphatidylinositol was calcium-dependent, whereas significant hydrolysis of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate occurred in the presence of 2.5 mM EGTA. At physiological concentrations of calcium, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were the preferred substrates. Antibodies specific for PI-PLC I reacted with a 62-kDa protein in both the cytosol and membrane fractions from guinea pig uterus. Quantitation of the immunoblots revealed that 25% of the 62-kDa protein was membrane-associated, whereas only 5% of the total enzyme activity was membrane-associated. Approximately 20% of the membrane-bound phospholipase C activity and immunoreactive material were loosely bound, whereas the remainder required detergent extraction for complete solubilization. The 62-kDa protein associated with the membrane fractions did not bind lectin affinity columns, suggesting that it was not glycosylated. PI-PLC I was identified as a phosphoprotein in [32P]orthophosphate-labeled rat basophilic leukemia (RBL-1) cells by two-dimensional gel electrophoresis followed by immunoblotting. In untreated cells, 32P-labeled PI-PLC I was found in the cytosolic fraction. Treatment of RBL-1 cells with those phorbol esters which are known to activate the Ca2+/phospholipid-dependent enzyme protein kinase C, resulted in a time-dependent increase in the phosphorylation of both membrane-bound and cytosolic PI-PLC I. Thus, in RBL-1 cells, protein kinase C may play an important role in the regulation of phospholipase C through protein phosphorylation.  相似文献   

6.
Members of phosphoinositide-specific phospholipase C (PLC) families are central intermediary in signal transduction in response to the occupancy of receptors by many growth factors. Among PLC isoforms, the type beta(1) is of particular interest because of its reported nuclear localisation in addition to its presence at the plasma membrane. It has been previously shown that both the stimulation and the inhibition of the nuclear PLCbeta(1) under different stimuli implicate PLCbeta(1) as an important enzyme for mitogen-activated cell growth as well as for murine erythroleukaemia cell differentiation. The above findings hinting at a direct involvement of PLCbeta(1) in controlling the cell cycle in rodent cells, and the previously reported mapping of its gene in rat chromosome band 3q35-36, a region frequently rearranged in rat tumours induced by chemical carcinogenesis, prompted us to identify its human homologue. By screening a human foetal brain cDNA library with the rat PLCbeta(1) cDNA probe, we have identified a clone homologous to a sequence in gene bank called KIAA 0581, which encodes a large part of the human PLCbeta(1). By using this human cDNA in fluorescence in situ hybridisation on human metaphases, it has been possible to map human PLCbeta(1) on chromosome 20p12, confirming the synteny between rat chromosome 3 and human chromosome 20 and providing a novel locus of homology between bands q35-36 in rat and p12 in man. Since band 20p12 has been recently reported amplified and/or deleted in several solid tumours, the identification and chromosome mapping of human PLCbeta(1) could pave the way for further investigations on the role exerted both in normal human cells and in human tumours by PLCbeta(1), which has been shown to behave as a key signalling intermediate in the control of the cell cycle.  相似文献   

7.
Two forms (mPLC-I, mPLC-II) of phosphoinositide-specific phospholipase C have been purified, 1494- and 1635-fold, respectively, from plasma membranes of human platelets. Purified mPLC-I and mPLC-II had estimated molecular weights by gel filtration and sodium dodecyl sulfate-polyacrylamide gels of 69,000 and 63,000, respectively. Two cytosolic forms (PLC-I and PLC-II) of phosphoinositide-specific phospholipase C were also resolved on a phenyl-Sepharose column. The major cytosolic form present in outdated platelets, PLC-II, was purified to homogeneity by chromatography on Fast Q-Sepharose, cellulose phosphate, heparin-agarose, phenyl-Sepharose, Superose 12, DEAE-5PW, and hydroxylapatite. Purified PLC-II had a molecular weight of 57,000 on sodium dodecyl sulfate-polyacrylamide gels. mPLC-I, mPLC-II, and PLC-II hydrolyzed both PI and PIP2. The Vmax for PIP2 hydrolysis was similar for all three forms of PLC and was approximately 5-fold greater than for PI hydrolysis. The Km for PIP2 hydrolysis was also similar for the three enzymes. In contrast, the Km for PI hydrolysis by PLC-II was 10-fold lower than by mPLC-I and mPLC-II. In addition, antibody prepared against PLC-II did not cross-react with either mPLC-I or mPLC-II. These data indicate that platelets contain membrane-associated phosphoinositide-specific phospholipases C that are distinct from at least one cytosolic form (PLC-II) of the enzyme.  相似文献   

8.
A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).  相似文献   

9.
Thiol:protein-disulfide oxidoreductase catalyzes the GSH reduction of protein disulfides to sulfhydryls. Chromatography of solubilized hepatic microsomes on Mono Q yielded two peaks, Q-2 and Q-5, which contained all the thiol:protein-disulfide oxidoreductase activity. These were further purified by chromatofocusing giving specific activities of 14.4 and 45.9 nmol/mg of protein/min, respectively with purifications of 45.0- and 143.6-fold. Amino acids 1-18 of Q-5 were the same as previously reported for Thiol:protein-disulfide oxidoreductase (Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A., and Rutter, W. J. (1985) Nature 317, 267-270), except amino acid 1 was leucine instead of aspartate and amino acid 6 was asparagine instead of glutamate. The N-terminal amino acid sequence of Q-2 differed markedly from Q-5 but Q-2 showed 100% identity at amino acids 25-54, 258-269, 285-310, 347-350, 412-419, and 434-463 for the reported sequence of rat, hepatic, cytosolic phosphatidylinositol-specific phospholipase C form 1a (PLC) (Bennett, C. F., Balcarek, J. M., Varrichio, A., and Crooke, S. T. (1988) Nature 334, 268-270). PLC activity was found in the elution from the Mono Q column, but none was found in purified Q-2 or Q-5. Antibodies to Q-5 reacted with Q-2, but anti-Q-2 did not react with Q-5. Anti-Q-2 antibody showed immunoreactivity with 55- and 60-kDa microsomal proteins, whereas Q-5 antibody reacted with a number of microsomal proteins. Although Q-2 was immunoreactive with a polyclonal antibody to guinea pig, uterine cytosolic PLC, partially purified PLCs from rat liver cytosol did not react to this antibody. Our data would suggest that the published sequence for PLC form 1a may actually be the sequence for Q-2.  相似文献   

10.
Isoforms AMY1, AMY2-1 and AMY2-2 of barley alpha-amylase were purified from malt. AMY2-1 and AMY2-2 are both susceptible to barley alpha-amylase/subtilisin inhibitor. The action of these isoforms is compared using substrates ranging from p-nitrophenylmaltoside through p-nitrophenylmaltoheptaoside. The kcat/Km values are calculated from the substrate consumption. The relative cleavage frequency of different substrate bonds is given by the product distribution. AMY2-1 is 3-8-fold more active than AMY1 toward p-nitrophenylmaltotrioside through p-nitrophenylmaltopentaoside. AMY2-2 is 10-50% more active than AMY2-1. The individual subsite affinities are obtained from these data. The resulting subsite maps of the isoforms are quite similar. They comprise four and six glucosyl-binding subsites towards the reducing and the non-reducing end, respectively. Towards the non-reducing end, the sixth and second subsites have a high affinity, the third has very low or even lack of affinity and the first (catalytic subsite) has a large negative affinity. The affinity declines from moderate to low for subsites 1 through 4 toward the reducing end. AMY1 has clearly a more negative affinity at the catalytic subsite, but larger affinities at both the fourth subsites, compared to AMY2. AMY2-1 has lower affinity than AMY2-2 at subsites adjacent to the catalytic site, and otherwise mostly higher affinities than AMY2-2. Theoretical kcat/Km values show excellent agreement with experimental values.  相似文献   

11.
The regulation of pituitary hormone secretion by TRH and GnRH proceeds through similar mechanisms which employ phosphoinositide hydrolysis to generate intracellular signals. Proximal events involve receptor activation of heterotrimeric (alpha beta gamma) GTP-binding (G) proteins which regulate phospholipase (PLC) activity. Since TRH and GnRH actions are not affected by cholera or pertussis toxin, a novel G protein (Gp) was suggested to mediate receptor regulation. The required Gp protein has not been identified and this was the focus of the present study. Recent molecular cloning and biochemical studies have characterized two novel, pertussis toxin-insensitive alpha-subunit proteins of the Gq subfamily (alpha q and alpha 11) which regulate the activity of the beta 1 isoenzyme of PLC. Gq and G11 represent the best candidates for the PLC-activating G proteins which mediate the actions of TRH and GnRH. To test this directly, an antibody to the common Gq/11 alpha-subunit carboxyterminal sequence was generated and shown to react with unique 42-kilodalton Gq alpha and 43-kilodalton G11 alpha proteins in membranes from TRH-responsive GH3 cells and GnRH-responsive alpha T3-1 pituitary cells. The Gq/11 alpha peptide antibody was shown to immunodeplete the Gp activity of GH3 cell membrane extracts measured by reconstitution of the guanine nucleotide regulation of PLC-beta 1. In addition, the immunoglobulin G fraction of Gq/11 alpha peptide immune serum specifically inhibited TRH- and GnRH-stimulated PLC activity measured in the membranes of GH3 and alpha T3-1 cells, respectively. The results indicate that TRH and GnRH activation of PLC requires receptor coupling to a Gp protein(s) which corresponds to Gq, G11 or both.  相似文献   

12.
L J McDonald  M D Mamrack 《Biochemistry》1989,28(26):9926-9932
Bovine heart contains multiple phosphoinositide-specific phospholipase C (PIC) activities separable by ion-exchange chromatography. One PIC activity was purified to apparent homogeneity and migrated as a single band of Mr 85,000 on SDS-PAGE. The purified PIC was characterized with sonicated suspensions of either pure phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol (PI) as substrates. At pH 7, apparent Vmax and Km values were higher for PIP2 than for PI, but the value of Vmax/Km was similar for the two substrates. PIC required Ca2+ for the hydrolysis of either PI or PIP2, and increasing free Ca2+ concentrations from 20 to 300 nM saturated PIC activity. The requirement of Ca2+ for PIC activity and the sensitivity of PIC to Ca2+ concentrations in the physiological range suggested the ion may be a cofactor. The PIC reaction mechanism was determined by two-substrate kinetic analysis; the data fit a model in which PIC contained single sites for Ca2+ and phosphoinositide, and utilized a rapid-equilibrium, random-order ternary mechanism for phosphoinositide hydrolysis. The KCa value for either PI or PIP2 hydrolysis was approximately 30 nM, suggesting resting intracellular free Ca2+ concentrations are sufficient to saturate the Ca2+ site of PIC. La3+ was used as a calcium analogue to modulate PIC activity. Low concentrations of LaCl3 (0.01-0.3 microM) inhibited PIC activity competitively with respect to calcium, consistent with a Ca2+ binding site on the enzyme.  相似文献   

13.
Phospholipase C was isolated from an outbreak strain of Salmonella gallinarum with ciprofloxacin extraction, dialysis, gel filtration, ion exchange chromatography and chromatofocussing. Purified phospholipase C (mol wt. 65 KDa; isoelectric point, pI 3.5) was resistant to pasteurization, stomach enzyme (pepsin), bacterial protease and lipase but lost its activity on trypsin and chymotrypsin treatment. It was sensitive to pH > or = 8.0. It was haemolytic, embryotoxic, enterohaemorrhagic, lethal to birds, cytotoxic to Vero and MDBK cells, dermonecrotoxic in rabbit and antigenically active protein. Antisera raised against purified phospholipase C neutralized its all biological activities and agglutinated the producer Salmonella strains. Serologically it was proved similar to phospholipase C of Klebsiella pneumoniae and S. weltevreden. Fluorescent antibody technique (FAT) was standardized to detect phospholipase producer strains.  相似文献   

14.
15.
S J Taylor  J H Exton 《FEBS letters》1991,286(1-2):214-216
Two G protein alpha subunits were detected in preparations of GTP gamma S-dependent, phosphoinositide-specific phospholipase C-activating proteins from bovine liver membranes. Partial resolution of the two alpha subunits, of molecular mass 42 and 43 kDa, was achieved by Mono Q chromatography. Quantitation of the levels of each alpha subunit and reconstitution assays demonstrated that each possessed stimulatory activity towards the beta 1 isozyme of phospholipase C. Immunoblot analysis showed that the 42 kDa protein was immunologically related to alpha q, whereas the 43 kDa protein was related to alpha 11, another member of the Gq class. The data thus show that two different alpha subunits of the Gq class of G proteins stimulate phospholipase C-beta 1 Activity.  相似文献   

16.
17.
18.
Phospholipase C isolated from porcine mesenteric lymph node lymphocytes was distributed between the soluble and particulate fractions. Enzyme activity was found predominantly in the soluble fraction with optimal activity at pH 5.5. Gel filtration chromatography of the soluble phospholipase C revealed that it was composed of multiple species of enzyme activity. The activity associated with the particulate fraction had optimal activity at pH 7.0, as also did one of the species of soluble phospholipase C. Cellulose phosphate chromatography resolved the major soluble form into two species designated PLC-A and PLC-B. Both phenyl-Sepharose chromatography and hydroxyapatite chromatography purified these species still further. PLC-A and PLC-B demonstrated similar activities against phosphatidylinositol with a pH optimum near 5.5. The phospholipase C activities were abolished against this substrate by the addition of 1 mM-EDTA. When assayed in the presence of Ca2+-EDTA buffers providing a range of Ca2+ free concentrations, both enzymes exhibited optimal activity near 10(-3) M free Ca2+, but PLC-B was inhibited above this concentration more than PLC-A. PLC-B exhibited markedly lower activity against phosphatidylinositol 4,5-bisphosphate, suspended as liposomes of the pure phospholipid, than did PLC-A.  相似文献   

19.
20.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is encoded by the ADE3 locus, yet ade3 mutants have low but detectable levels of these enzyme activities. Synthetase, cyclohydrolase, and dehydrogenase activities in an ade3 deletion strain co-purify 4,000-fold to yield a single protein species as seen on sodium dodecyl sulfate-polyacrylamide gels. The native molecular weight of the isozyme (Mr = 200,000 by gel exclusion chromatography) and the size of its subunits (Mr = 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are similar to those of C1-tetrahydrofolate synthase. Cell fractionation experiments show that the isozyme, but not C1-tetrahydrofolate synthase, is localized in the mitochondria. Genetic studies indicate that the isozyme is encoded in the nuclear genome. Peptide mapping experiments show that C1-tetrahydrofolate synthase and the isozyme are not structurally identical. However, immunotitration experiments and amino acid sequence analysis suggest that C1-tetrahydrofolate synthase and the isozyme are structurally related. We propose to call the isozyme "mitochondrial C1-tetrahydrofolate synthase."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号