首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

2.
From a theoretical viewpoint, nature management basically has two options to prolong metapopulation persistence: decreasing local extinction probabilities and increasing colonization probabilities. This article focuses on those options with a stochastic, single-species metapopulation model. We found that for most combinations of local extinction probabilities and colonization probabilities, decreasing the former increases metapopulation extinction time more than does increasing the latter by the same amount. Only for relatively low colonization probabilities is an effort to increase these probabilities more beneficial, but even then, decreasing extinction probabilities does not seem much less effective. Furthermore, we found the following rules of thumb. First, if one focuses on extinction, one should preferably decrease the lowest local extinction probability. Only if the extinction probabilities are (almost) equal should one prioritize decreases in the local extinction probability of the patch with the best direct connections to and from other patches. Second, if one focuses on colonization, one should preferably increase the colonization probability between the patches with the lowest local extinction probability. Only if the local extinction probabilities are (almost) equal should one instead prioritize increases in the highest colonization probability (unless extinction probabilities and colonization probabilities are very low). The rules of thumb have an important common denominator: the local extinction process has a greater bearing on metapopulation extinction time than colonization.  相似文献   

3.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

4.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

5.
Although habitat fragmentation is a major threat to global biodiversity, the demographic mechanisms underlying species loss from tropical forest remnants remain largely unexplored. In particular, no studies at the landscape scale have quantified fragmentation's impacts on colonization, extinction, and local population growth simultaneously. In central Amazonia, we conducted a multiyear demographic census of 292 populations of two leaf-inhabiting (i.e., epiphyllous) bryophyte species transplanted from continuous forest into a network of 10 study sites ranging from 1, 10, and 100 to > 10,000 ha in size. All populations experienced significantly positive local growth (lambda > 1) and a nearly constant per-generational extinction probability (15%). However, experimental leaf patches in reserves of > or = 100 ha experienced nearly double (48%) the colonization probability observed in small reserves (27%), suggesting that the proximate cause of epiphyll species loss in small fragments (< or = 10 ha) is reduced colonization. Nonetheless, populations of small fragments exhibit rates of colonization above patch extinction, positive local growth, and low temporal variation, which are features that should theoretically reduce the probability of extinction. This result suggests that for habitat-tracking metapopulations subject to frequent and stochastic turnover events, including epiphylls, colonization/extinction ratios must be maintained well above unity to ensure metapopulation persistence.  相似文献   

6.
We model metapopulation dynamics in finite networks of discrete habitat patches with given areas and spatial locations. We define and analyze two simple and ecologically intuitive measures of the capacity of the habitat patch network to support a viable metapopulation. Metapopulation persistence capacity lambda(M) defines the threshold condition for long-term metapopulation persistence as lambda(M)>delta, where delta is defined by the extinction and colonization rate parameters of the focal species. Metapopulation invasion capacity lambda(I) sets the condition for successful invasion of an empty network from one small local population as lambda(I)>delta. The metapopulation capacities lambda(M) and lambda(I) are defined as the leading eigenvalue or a comparable quantity of an appropriate "landscape" matrix. Based on these definitions, we present a classification of a very general class of deterministic, continuous-time and discrete-time metapopulation models. Two specific models are analyzed in greater detail: a spatially realistic version of the continuous-time Levins model and the discrete-time incidence function model with propagule size-dependent colonization rate and a rescue effect. In both models we assume that the extinction rate increases with decreasing patch area and that the colonization rate increases with patch connectivity. In the spatially realistic Levins model, the two types of metapopulation capacities coincide, whereas the incidence function model possesses a strong Allee effect characterized by lambda(I)=0. For these two models, we show that the metapopulation capacities can be considered as simple sums of contributions from individual habitat patches, given by the elements of the leading eigenvector or comparable quantities. We may therefore assess the significance of particular habitat patches, including new patches that might be added to the network, for the metapopulation capacities of the network as a whole. We derive useful approximations for both the threshold conditions and the equilibrium states in the two models. The metapopulation capacities and the measures of the dynamic significance of particular patches can be calculated for real patch networks for applications in metapopulation ecology, landscape ecology, and conservation biology.  相似文献   

7.
Mark P. Johnson 《Oikos》2000,88(1):67-74
The classical view of metapopulations relates the regional abundance of a species to the balance between the extinction and colonization dynamics of identical local populations. Species in successional landscapes may represent the most appropriate examples of classical metapopulations. However, Levins‐type metapopulation models do not explicitly separate population loss due to successional habitat change from other causes of extinction. A further complication is that the chance of population loss due to successional habitat change may be related to the age of a patch. I developed simple patch occupancy models to include succession and included consideration of patch age structure to address two related questions: what are the implications of changes in patch demographic rates and when is a move to a structured patch occupancy model justified? Age‐related variation in patch demography could increase or decrease the equilibrium fraction of the available habitat occupied by a species when compared to the predictions of an unstructured model. Metapopulation persistence was enhanced when the age class of patches with the highest species occupancy suffered relatively low losses to habitat succession. Conversely, when the age class of patches with the highest species occupancy also had relatively high successional loss rates, extinction thresholds were higher that would be predicted by a simple unstructured model. Hence age‐related variation in patch successional rate introduces biases into the predictions of simple unstructured models. Such biases can be detected from field surveys of the fraction of occupied and unoccupied patches in each age class. Where a bias is demonstrated, unstructured models will not be adequate for making predictions about the effects of changing parameters on metapopulation size. Thinking in successional terms emphasizes how landscapes might be managed to enhance or reduce the patch occupancy by any particular metapopulation  相似文献   

8.
Atte Moilanen 《Oikos》2002,96(3):516-530
Parameter estimation is a critical step in the use of any metapopulation model for predictive purposes. Typically metapopulation studies assume that empirical data are of good quality and any errors are so insignificant that they can be ignored. However, three types of errors occur commonly in metapopulation data sets. First, patch areas can be mis-estimated. Second, unknown habitat patches may be located within or around the study area. Third, there may be false zeros in the data set, that is, some patches were observed to be empty while there truly was a population in the patch. This study investigates biases induced into metapopulation model parameter estimates by these three types of errors. It was found that mis-estimated areas influence the scaling of extinction risk with patch area; extinction probabilities for large patches become overestimated. Missing patches cause overestimation of migration distances and colonization ability of the species. False zeros can affect very strongly all model components, the extinction risk in large patches, intrinsic extinction rates in general, migration distances and colonization ability may become all overestimated. Biases in parameter estimates translate into corresponding biases in model predictions, which are serious particularly if metapopulation persistence becomes overestimated. This happens for example when the migration capability of the species is overestimated. Awareness of these biases helps in understanding seemingly anomalous parameter estimation results. There are also implications for field work: it may be reasonable to allocate effort so that serious errors in data are minimized. It is particularly important to avoid observing false zeros for large and/or isolated patches.  相似文献   

9.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

10.
Toward ecologically scaled landscape indices   总被引:2,自引:0,他引:2  
Nature conservation is increasingly based on a landscape approach rather than a species approach. Landscape planning that includes nature conservation goals requires integrated ecological tools. However, species differ widely in their response to landscape change. We propose a framework of ecologically scaled landscape indices that takes into account this variation. Our approach is based on a combination of field studies of spatially structured populations (metapopulations) and model simulations in artificial landscapes. From these, we seek generalities in the relationship among species features, landscape indices, and metapopulation viability. The concept of ecological species profiles is used to group species according to characteristics that are important in metapopulations' response to landscape change: individual area requirements as the dominant characteristic of extinction risk in landscape patches and dispersal distance as the main determinant of the ability to colonize patches. The ecological profiles and landscape indices are then integrated into two ecologically scaled landscape indices (ESLI): average patch carrying capacity and average patch connectivity. The field data show that the fraction of occupied habitat patches is correlated with the two ESLI. To put the ESLI into a perspective of metapopulation persistence, we determine the viability for six ecological profiles at different degrees of habitat fragmentation using a metapopulation model and computer-generated landscapes. The model results show that the fraction of occupied patches is a good indicator for metapopulation viability. We discuss how ecological profiles, ESLI, and the viability threshold can be applied for landscape planning and design in nature conservation.  相似文献   

11.
Long-term persistence of species and the SLOSS problem   总被引:1,自引:0,他引:1  
The single large or several small (SLOSS) problem has been addressed in a large number of empirical and theoretical studies, but no coherent conclusion has yet been reached. Here I study the SLOSS problem in the context of metapopulation dynamics. I assume that there is a fixed total amount A(0) of habitat available, and I derive formulas for the optimal number n and area A of habitat patches, where n=A(0)/A. I consider optimality in two ways. First, I attempt to maximize the time to metapopulation extinction, which is a relevant measure for metapopulation viability for rare and threatened species. Second, I attempt to maximize the metapopulation capacity of the habitat patch network, which corresponds both with maximizing the distance to the deterministic extinction threshold and with maximizing the fraction of occupied patches. I show that in the typical case, a small number of large patches maximizes the metapopulation capacity, while an intermediate number of habitat patches maximizes the time to extinction. The main conclusion stemming from the analysis is that the optimal number of patches is largely affected by the relationship between habitat patch area and rates of immigration, emigration and local extinction. Here this relationship is summarized by a single factor zeta, termed the patch area scaling factor.  相似文献   

12.
In this paper three extensions of the Levins metapopulation model are discussed: (1) It is shown that the Levins model is still valid if patches contain local populations of different sizes with different colonization and extinction rates. (2) A more mechanistic formulation of the rescue effect is presented. (3) The addition of preference of dispersers for occupied or empty patches and its consequences for conservation strategies are studied.  相似文献   

13.
Alexandro Caruso  Göran Thor  Tord Snäll 《Oikos》2010,119(12):1947-1953
Metapopulation models are often used for understanding and predicting species dynamics in fragmented landscapes. Several models have been proposed depending on e.g. the relative importance of patch dynamics on the metapopulation dynamics. Dead wood is a dynamic substrate patch, and species that are confined to such patches have experienced a high degree of habitat loss in managed forests. Little is, however, known about how the population dynamics of epixylic species are affected by the fast dynamics of their substrate patches. We quantified the effect of local patch conditions and metapopulation processes on colonizations and extinctions of epixylic lichen species in a managed boreal forest landscape. This was done by twice surveying seven lichen metapopulations on 293 stumps in 30 stands of ages covering the duration of the dynamic patches (stumps). We also investigated the relative importance of local stochastic extinctions from stumps that remained available, and deterministic extinctions due to stump surface disappearance. We found importance of a decay gradient, surrounding metapopulation size, and local population sizes, in driving the colonization–extinction dynamics of epixylic lichens. The species were sorted along the stump decay gradient. Increasing surrounding metapopulation size was associated with increased colonization rates, and increasing local population size decreased lichen extinction rates. Finally, both local stochastic extinctions and deterministic extinctions due to patch disappearance occur, confirming that the long‐term persistence of epixylic lichens depends on colonization rates that compensate for stochastic population extinctions as well as deterministic extinctions.  相似文献   

14.
The metapopulation concept is widely established in population biology. It predicts that the likelihood of colonization of an empty patch is positively correlated with its connectivity, because colonizers from occupied patches will be more likely to reach an empty patch if they are closer to it. Another prediction is that the likelihood of extinction of an occupied patch will be negatively correlated with its connectivity to other patches, as the occupied patch can be ‘reinforced’ by immigrants from patches that are close by. We tested these predictions using an extensive data set for an epiphytic orchid, Lepanthes rupestris from Puerto Rico. Our data did not support the first prediction, but we found that the likelihood of extinction is negatively correlated with patch connectivity. We hypothesize that this might be because most orchid seeds are wind dispersed and seeds that do not fall immediately below the mother plant are uniformly distributed after a steep leptokurtic distribution. We predict that taxa with similar seed and gene flow characteristics should show similar patterns in the association between colonization/extinction rates and patch connectivity. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 598–606.  相似文献   

15.
A recent study [Harding and McNamara, 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160, 173-185] presented a unifying framework for the classic Levins metapopulation model by incorporating several realistic biological processes, such as the Allee effect, the Rescue effect and the Anti-rescue effect, via appropriate modifications of the two basic functions of colonization and extinction rates. Here we embed these model extensions on a spatially explicit framework. We consider population dynamics on a regular grid, each site of which represents a patch that is either occupied or empty, and with spatial coupling by neighborhood dispersal. While broad qualitative similarities exist between the spatially explicit models and their spatially implicit (mean-field) counterparts, there are also important differences that result from the details of local processes. Because of localized dispersal, spatial correlation develops among the dynamics of neighboring populations that decays with distance between patches. The extent of this correlation at equilibrium differs among the metapopulation types, depending on which processes prevail in the colonization and extinction dynamics. These differences among dynamical processes become manifest in the spatial pattern and distribution of “clusters” of occupied patches. Moreover, metapopulation dynamics along a smooth gradient of habitat availability show significant differences in the spatial pattern at the range limit. The relevance of these results to the dynamics of disease spread in metapopulations is discussed.  相似文献   

16.
This article addresses an important aspect of the analysis of metapopulation persistence. It highlights some consequences of ignoring and including stochasticity in the sequence of extinction and colonization events. The results are based on a comparative analysis of the outcomes of two (one deterministic, one stochastic) spatially realistic metapopulation models and a search for common effects and differences. One key result of the article is that, under certain conditions, there are extra effects of the landscape structure (number and configuration of patches, patch size distribution) on metapopulation persistence if stochasticity is included. In these cases, ignoring or including stochasticity can change conclusions about the persistence status but also ranking orders, relative results, and qualitative trends. A list of conditions is provided under which including stochasticity is vital to prevent counterproductive conclusions about metapopulation persistence. The results of the overall study are condensed in five lessons about the effect of stochasticity. A number of implications for ecological theory and conservation management are discussed. The study demonstrates the potential of three recently published approximation formulas (metapopulation capacity lambdaM, mean lifetime Tm, and effective number of patches N) to serve as tools for ecological analysis and thinking.  相似文献   

17.
A generalization of the well-known Levins’ model of metapopulations is studied. The generalization consists of (i) the introduction of immigration from a mainland, and (ii) assuming the dynamics is stochastic, rather than deterministic. A master equation, for the probability that n of the patches are occupied, is derived and the stationary probability P s (n), together with the mean and higher moments in the stationary state, determined. The time-dependence of the probability distribution is also studied: through a Gaussian approximation for general n when the boundary at n = 0 has little effect, and by calculating P(0, t), the probability that no patches are occupied at time t, by using a linearization procedure. These analytic calculations are supplemented by carrying out numerical solutions of the master equation and simulations of the stochastic process. The various approaches are in very good agreement with each other. This allows us to use the forms for P s 0) and P(0, t) in the linearization approximation as a basis for calculating the mean time for a metapopulation to become extinct. We give an analytical expression for the mean time to extinction derived within a mean field approach. We devise a simple method to apply our mean field approach even to complex patch networks in realistic model metapopulations. After studying two spatially extended versions of this nonspatial metapopulation model—a lattice metapopulation model and a spatially realistic model—we conclude that our analytical formula for the mean extinction time is generally applicable to those metapopulations which are really endangered, where extinction dynamics dominates over local colonization processes. The time evolution and, in particular, the scope of our analytical results, are studied by comparing these different models with the analytical approach for various values of the parameters: the rates of immigration from the mainland, the rates of colonization and extinction, and the number of patches making up the metapopulation.  相似文献   

18.
Metapopulation models are widely used to study species that occupy patchily distributed habitat, but are rarely applied to migratory species, because of the difficulty of identifying demographically independent subpopulations. Here, we extend metapopulation theory to describe the directed seasonal movement of migratory populations between two sets of habitat patches, breeding and non-breeding, with potentially different colonization and extinction rates between patch types. By extending the classic metapopulation model, we show that migratory metapopulations will persist if the product of the two colonization rates exceeds the product of extinction rates. Further, we develop a spatially realistic migratory metapopulation model and derive a landscape metric-the migratory metapopulation capacity-that determines persistence. This new extension to metapopulation theory introduces an important tool for the management and conservation of migratory species and may also be applicable to model the dynamics of two host-parasite systems.  相似文献   

19.
Mistletoes are aerial hemiparasitic plants which occupy patches of favorable habitat (host trees) surrounded by unfavorable habitat and may be possibly modeled as a metapopulation. A metapopulation is defined as a subdivided population that persists due to the balance between colonization and extinction in discrete habitat patches. Our aim was to evaluate the dynamics of the mistletoe Psittacanthus robustus and its host Vochysia thyrsoidea in three Brazilian savanna areas using a metapopulation approach. We also evaluated how the differences in terms of fire occurrence affected the dynamic of those populations (two areas burned during the study and one was fire protected). We monitored the populations at six-month intervals. P. robustus population structure and dynamics met the expected criteria for a metapopulation: i) the suitable habitats for the mistletoe occur in discrete patches; (ii) local populations went extinct during the study and (iii) colonization of previously non-occupied patches occurred. The ratio of occupied patches decreased in all areas with time. Local mistletoe populations went extinct due to two different causes: patch extinction in area with no fire and fire killing in the burned areas. In a burned area, the largest decrease of occupied patch ratios occurred due to a fire event that killed the parasites without, however, killing the host trees. The greatest mortality of V. thyrsoidea occurred in the area without fire. In this area, all the dead trees supported mistletoe individuals and no mortality was observed for parasite-free trees. Because P. robustus is a fire sensitive species and V. thyrsoidea is fire tolerant, P. robustus seems to increase host mortality, but its effect is lessened by periodic burning that reduces the parasite loads.  相似文献   

20.
Metapopulation theory for fragmented landscapes   总被引:18,自引:0,他引:18  
We review recent developments in spatially realistic metapopulation theory, which leads to quantitative models of the dynamics of species inhabiting highly fragmented landscapes. Our emphasis is in stochastic patch occupancy models, which describe the presence or absence of the focal species in habitat patches. We discuss a number of ecologically important quantities that can be derived from the full stochastic models and their deterministic approximations, with a particular aim of characterizing the respective roles of the structure of the landscape and the properties of the species. These quantities include the threshold condition for persistence, the contributions that individual habitat patches make to metapopulation dynamics and persistence, the time to metapopulation extinction, and the effective size of a metapopulation living in a heterogeneous patch network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号