首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During cell swelling, cells release organic osmolytes via a volume-activated channel as part of the regulatory volume decrease. The erythrocyte membrane protein AE1 (band 3), has been shown to be involved in regulatory volume responses of fish erythrocytes. Previous studies showed that the expression of trout AE1 in Xenopus laevis oocytes induces band 3 anion exchange activity and organic osmolyte channel activity. However, an endogenous swelling-activated anion channel, IClswell, is present in Xenopus oocyte membranes. Therefore, it is not yet known whether a new organic osmolyte channel is formed or whether the endogenous channel, IClswell, is activated when trout AE1 is expressed in the oocytes. The purpose of this study was to determine whether the expression of trout AE1 in Xenopus oocytes leads to the formation and membrane insertion of a new organic osmolyte channel or activates IClswell. To differentiate between the two possibilities, we compared the time courses, pH profiles and inhibitor sensitivities of both trout AE1 and IClswell. The results of taurine-uptake experiments show that the time courses and pH levels for optimum expression of trout AE1 and IClswell differ significantly. The inhibitor sensitivities of the organic osmolyte channel mediated by trout AE1 and IClswell are also significantly different, strongly suggesting that the expression of trout AE1 in Xenopus oocytes does not activate IClswell, but rather forms a new organic osmolyte channel.  相似文献   

2.
Regulatory volume decrease occurs in fish erythrocytes by the release of osmolytes via a channel involving the anion exchanger (AE), also known as band 3. This review focuses primarily on work done on red blood cells from the skate (Raja erinacea) to further understand the activation, regulation and identification of this osmolyte channel. A model is proposed in which the reduction in intracellular ionic strength that occurs with increased cell volume may change the interaction between AE dimers and other cytoplasmic proteins (band 4.1 and ankyrin), promoting the formation of a tetrameric osmolyte channel. Phosphorylation by two tyrosine kinases, p72syk and p56lyn, is linked to this oligomerization. The skate AE has been recently cloned, resulting in three different isoforms, one of which, skAE1, when expressed in Xenopus oocytes, demonstrates taurine transport.  相似文献   

3.
A phylogenetic tree of anion exchangers (AE) was performed in order to better understand relationships between the different known AE and how they arose. Indeed, the different known AE1 from mammals or fish do not exhibit the same transport features: all studied anion exchangers 1 (AE1) catalyse an electroneutral Cl-/HCO3- exchange through the plasma membrane; however, trout AE1 (tAE1) is able to spontaneously form an anion conductive pathway permeable to some inorganic cations (Na+ and K+) as well as to organic osmolytes such as taurine. Therefore, it has been proposed that this major erythrocyte membrane protein could play a key role for the cell volume regulation of trout red cells. By analogy, it was envisioned that other fish anion exchangers could play a similar role in osmolyte loss induced by erythrocyte swelling. We have cloned AE1 from Raja erinacea and Danio rerio and studied their properties after expression in Xenopus laevis oocytes. In this study, we show that none of them is able to induce any conductive pathway or taurine permeability in Xenopus oocytes. Our phylogenetic analyses show that, first, all present AE1 genes have a common ancestor distinct from that of AE2 and AE3 and second, tAE1 is a true AE1 ortholog. The question of whether tAE1 conductive properties are a derived character in the trout lineage within Euteleostei or whether other AE1 members can share these properties is then discussed.  相似文献   

4.
It was previously shown that expressed in Xenopus oocyte the trout (tAE1) and the mouse (mAE1) anion exchangers behave differently: both elicit anion exchange activity but only tAE1 induces a transport of organic solutes correlated with an anion conductance. In order to identify the structural domains involved in the induction of tAE1 channel activity, chimeras have been prepared between mouse and trout AE1. As some constructs were not expressed at the plasma membrane, skate exchanger (skAE1) was used instead of mouse exchanger to complete the structure-function analysis. The present paper shows that skAE1, highly similar to mAE1, does not induce a chloride conductance when expressed in Xenopus oocyte. Construct expression analysis showed that only tAE1 transmembrane domain is linked to the anion conductance. More precisely, we identified two regions composed of helices 6, 7 and 8 and putative helices 12 and 13 which are required for this function.  相似文献   

5.
It was previously shown that expressed in Xenopus oocyte the trout (tAE1) and the mouse (mAE1) anion exchangers behave differently: both elicit anion exchange activity but only tAE1 induces a transport of organic solutes correlated with an anion conductance.In order to identify the structural domains involved in the induction of tAE1 channel activity, chimeras have been prepared between mouse and trout AE1. As some constructs were not expressed at the plasma membrane, skate exchanger (skAE1) was used instead of mouse exchanger to complete the structure-function analysis. The present paper shows that skAE1, highly similar to mAE1, does not induce a chloride conductance when expressed in Xenopus oocyte. Construct expression analysis showed that only tAE1 transmembrane domain is linked to the anion conductance. More precisely, we identified two regions composed of helices 6, 7 and 8 and putative helices 12 and 13 which are required for this function.  相似文献   

6.
In mammalian cells, the organic osmolyte taurine is accumulated by the Na-dependent taurine transporter TauT and released though the volume- and DIDS-sensitive organic anion channel. Incubating Ehrlich Lettré tumor cells with methyl-β-cyclodextrin (5 mM, 1 h) reduces the total cholesterol pool to 60 ± 5% of the control value. Electron spin resonance data indicate a concomitant disruption of cholesterol-rich micro-domains. Active taurine uptake, cellular taurine content, and cell volume are reduced by 50, 20 and 20% compared to control values, respectively, whereas the passive taurine release is increased 4.5-fold under isotonic conditions following cholesterol depletion. However, taurine release under isotonic conditions is insensitive to DIDS and inhibitors of the volume-regulated anion channel. Uptake and release of meAIB are similarly affected following cholesterol depletion. Kinetic analysis reveals that cholesterol depletion increases TauT’s affinity toward taurine but reduces its maximal transport capacity. Cholesterol depletion has no impact on TauT regulation by protein kinases A and C. Phospholipase A2 activity, which is required for the activation of volume-sensitive organic anion channel (VSOAC), is increased under isotonic and hypotonic conditions following cholesterol depletion, whereas taurine release under hypotonic conditions is reduced following cholesterol depletion. Hence, acute cholesterol depletion of Ehrlich Lettré cells leads to reduced TauT and VSOAC activities and at the same time increases the release of organic osmolytes via a leak pathway different from the volume-sensitive pathways for amino acids and anions.  相似文献   

7.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

8.
A permanent cell line with inducible expression of the trout anion exchanger protein (trAE1) was constructed in a derivative of human embryonic kidney cells (HEK-293). In the absence of the inducer, muristerone A, the new cell line had no detectable trAE1 protein by Western analysis, biotinylation, and (36)Cl(-) flux. The amount of trAE1 protein increased with increasing dose and incubation time with muristerone A. Anion exchange inhibitors significantly inhibited the inducible flux of anions (i.e., (36)chloride and (35)sulfate) and taurine in isotonic media. The transfected cells had the characteristics of trAE1-mediated transport in intact trout erythrocytes: (1) inhibition by anion transport inhibitors, (2) pH independence over the pH range of 6.5-7.5, and (3) activation of (35)sulfate efflux by external anions in the selective order of Cl > Br > I > or = F. These cells, in contrast to trout erythrocytes, were not sensitive to the anion exchange inhibitor, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), suggesting some difference in the properties of the transfected AE1. These results demonstrate the inducible expression of new anion transport membrane protein in HEK-293 cells. This is the first expression of trAE1 in a mammalian system.  相似文献   

9.
Cells have to regulate their volume in order to survive. Moreover, it is now evident that cell volume per se and the membrane transport processes which regulate it, comprise an important signalling unit. For example, macromolecular synthesis, apoptosis, cell growth and hormone secretion are all influenced by the cellular hydration state. Therefore, a thorough understanding of volume-activated transport processes could lead to new strategies being developed to control the function and growth of both normal and cancerous cells. Cell swelling stimulates the release of ions such as K(+) and Cl(-) together with organic osmolytes, especially the beta-amino acid taurine. Despite being the subject of intense research interest, the nature of the volume-activated taurine efflux pathway is still a matter of controversy. On the one hand it has been suggested that osmosensitive taurine efflux utilizes volume-sensitive anion channels whereas on the other it has been proposed that the band 3 anion-exchanger is a swelling-induced taurine efflux pathway. This article reviews the evidence for and against a role of anion channels and exchangers in osmosensitive taurine transport. Furthermore, the distinct possibility that neither pathway is involved in taurine transport is highlighted. The putative relationship between swelling-induced taurine transport and volume-activated anionic amino acid, alpha-neutral amino acid and K(+) transport is also examined.  相似文献   

10.
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.  相似文献   

11.
Taurine is an important osmolyte involved in cell volume regulation. During regulatory volume decrease it is released via a volume-sensitive organic osmolyte/anion channel. Several molecules have been suggested as candidates for osmolyte release. In this study, we chose three of these, namely ClC-2, ClC-3 and ICln, because of their expression in rat astrocytes, a cell type which is known to release taurine under hypotonic stress, and their activation by hypotonic shock. As all three candidates were also suggested to be chloride channels, we investigated their permeability for both chloride and taurine under isotonic and hypotonic conditions using the Xenopus laevis oocyte expression system. We found a volume-sensitive increase of chloride permeability in ClC-2-expressing oocytes only. Yet, the taurine permeability was significantly increased under hypotonic conditions in oocytes expressing any of the tested candidates. Further experiments confirmed that the detected taurine efflux does not represent unspecific leakage. These results suggest that ClC-2, ClC-3 and ICln either participate in taurine transport themselves or upregulate an endogenous oocyte osmolyte channel. In either case, the taurine efflux of oocytes not being accompanied by an increased chloride flux suggests that taurine and chloride can be released via two separate pathways.  相似文献   

12.
NIH3T3 mouse fibroblasts generate reactive oxygen species (ROS) and release taurine following exposure to hypotonic medium and to isotonic medium containing the lipase activator melittin. The swelling-induced taurine release is potentiated by H2O2, the calmodulin antagonist W7, and ATP, but inhibited by the antioxidant butulated hydroxytoluene (BHT), the NAD(P)H oxidase inhibitor diphenylene iodonium (DI), and the iPLA2 inhibitor bromoenol lactone (BEL). The swelling-induced ROS production is also inhibited by BHT and BEL. H2O2 does not affect the volume set point for activation of the volume-sensitive taurine efflux. The 5-lipoxygenase (5-LO) inhibitor ETH 615-139 impairs the swelling-induced taurine efflux in the absence as well as in the presence of H2O2. The melittin-induced taurine release is, in analogy with the swelling-induced taurine release, potentiated by H2O2 and inhibited by BHT, DI, BEL, ETH 615-139 and anion channel blockers. Thus, swelling- and melittin-induced cell signalling and taurine release involve joint elements. The swelling-induced taurine efflux is potentiated by the protein tyrosine phosphatase inhibitor vanadate, and the potentiating effect of H2O2 and vanadate is impaired in the presence of protein tyrosine kinase inhibitor genistein. It is suggested that (i) iPLA2 and 5-LO activity is required for the swelling-induced activation of taurine efflux from NIH3T3 cells, (ii) ROS are produced subsequent to the PLA2 activation by the NAD(P)H oxidase complex, and (iii) ROS inhibit a protein tyrosine phosphatase (PTP1B) causing a potentiation of the swelling-induced taurine release.  相似文献   

13.
Taurine, an important mediator of cellular volume regulation in the central nervous system, is accumulated into neurons and glia by means of a highly specific sodium-dependent membrane transporter. During hyperosmotic cell shrinkage, net cellular taurine content increases as taurine transporter activity is enhanced via elevated gene expression of the transporter protein. In hypo-osmotic conditions, taurine is rapidly lost from cells by means of taurine-conducting membrane channels. We reasoned that changes in taurine transporter activity also might accompany cell swelling to minimize re-accumulation of taurine from the extracellular space. Thus, we determined the kinetic and pharmacological characteristics of neuronal taurine transport and the response to osmotic swelling. Accumulation of radioactive taurine is strongly temperature dependent and occurs via saturable and non-saturable pathways. At concentrations of taurine expected in extracellular fluid in vivo, 98% of taurine accumulation would occur via the saturable pathway. This pathway obeys Michaelis-Menten kinetics with a Km of 30.0 +/- 8.8 microm (mean +/- SE) and Jmax of 2.1 +/- 0.2 nmol/mg protein min. The saturable pathway is dependent on extracellular sodium with an effective binding constant of 80.0 +/- 3.1 mm and a Hill coefficient of 2.1 +/- 0.1. This pathway is inhibited by structural analogues of taurine and by the anion channel inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and 5-nitro-2-(3 phenylpropylamino) benzoic acid (NPPB). NPPB, but not DIDS, also reduces the ATP content of the cell cultures. Osmotic swelling at constant extracellular sodium concentration reduces the Jmax of the saturable transport pathway by approximately 48%, increases Kdiff for the non-saturable pathway by 77%, but has no effect on cellular ATP content. These changes in taurine transport occurring in swollen neurons in vivo would contribute to net reduction of taurine content and resulting volume regulation.  相似文献   

14.
In distal renal tubular acidosis (dRTA) the tubular secretion of hydrogen ion in the distal nephron is impaired, leading to the development of metabolic acidosis, frequently accompanied by hypokalemia, nephrocalcinosis, and metabolic bone disease. The condition can be familial, when it is usually inherited as an autosomal dominant, though there is a rarer autosomal recessive form associated with nerve deafness. It has been shown that the autosomal dominant form of dRTA is associated with a defect in the anion exchanger (AE1) of the renal collecting duct intercalated cell. This transporter is a product of the same gene (AE1) as the erythrocyte anion exchanger, band 3. In this review we will look at the evidence for this association. Studies of genomic DNA from families with this disorder have shown, both by genetic linkage studies and by DNA sequencing, that affected individuals are heterozygous for mutations in the AE1 gene whilst unaffected family members have a normal band 3 sequence. Mutations have been found in the region of proposed helices 6 and 7 of the membrane domain of band 3 and involve amino acids Arg-589 and Ser-613, and in the COOH-terminal domain of band 3. Studies of red cell band 3 from these families have provided information on the effect these mutations have on the structure and function of erythrocyte band 3. Expression studies of the erythroid and kidney isoforms of the mutant AE1 proteins, in Xenopus laevis oocytes, have shown that they retained chloride transport activity, suggesting that the disease in the dRTA families is not related simply to the anion transport activity of the mutated proteins. A possible explanation for the dominant effect of these mutant AE1 proteins in the kidney cell is that these mutations affect the targeting of AE1 from the basolateral to the apical membrane of the alpha-intercalated cell.  相似文献   

15.
Molecular recognition of senescent cells involves oxidation of a crucial membrane protein leading to generation of a neoantigen, called 'senescent cell antigen' (SCA), and binding of physiologic autoantibodies. These IgG autoantibodies trigger macrophage removal of the cell prior to its lysis at a time when anion transport has decreased but the membrane is still grossly intact. The neoantigen SCA is generated by oxidation of a major anion transport protein called band 3 or anion exchange protein. In this study, we use IgG physiologic autoantibodies from senescent red cells to isolate SCA from brain, and HPLC and fast atom bombardment ionization mass spectrometry (FAB-MS) to compare brain SCA to band 3. HPLC peptide maps of band 3 and SCA showed substantial homology, suggesting that SCA is a subset of band 3, and includes an estimated >/=45% of the band 3 molecule. FAB-MS results indicate that residues matching all three band 3 isoforms (AE1, AE2 and AE3) are detected in SCA fractions. These findings suggest that other isoforms of band 3 may undergo the same aging changes that AE1 on red blood cells undergoes to generate SCA. This provides confirmation that SCA is on non-erythroid cell types. Implications of these studies to the generation of neoantigens by oxidation and their recognition by autoantibodies to them are discussed.  相似文献   

16.
Summary All cells including neurons and glial cells are able to keep their volume within a very limited range. The volume regulatory mechanism involves changes in the concentration of osmolytes of which taurine appears to be of particular importance in brain cells. Swelling in brain cells may occur as a result of depolarization or small fluctuations in osmolarity. In isolated brain cells these conditions will always lead to a release of taurine, the time course of which is superimposable on that of the volume regulatory decrease which follows the initial cell swelling. The mechanism responsible for taurine release associated with swelling has not been fully elucidated but a large body of evidence seems to exclude participation of the taurme high affinity carrier. Using a number of inhibitors of anion exchangers it has been demonstrated that both volume regulation and taurine release in brain cells are inhibited by these drugs, implicating an anion channel in the process. It has be controversial issue as to whether or not taurine release is Ca++ dependent. Recent evidence appears to suggest that the release process is not associated with Ca++ or Ca++ channels. It is, however, quite possible that the swelling process may involve the Ca++ calmodulin system or other second messengers. Taurine also contributes to volume regulation after shrinkage of brain cells, in this case by increasing its intracellular concentration. This change is accomplished byan upregulation of the Na+/taurine cotransporter, together with reduced passive fluxes and increased endogenous synthesis.  相似文献   

17.
Human Intestine 407 cells respond to osmotic cell swelling by the activation of Cl(-)- and K(+)-selective ionic channels, as well as by stimulating an organic osmolyte release pathway readily permeable to taurine and phosphocholine. Unlike the activation of volume-regulated anion channels (VRAC), activation of the organic osmolyte release pathway shows a lag time of approximately 30-60 s, and its activity persists for at least 8-12 min. In contrast to VRAC activation, stimulation of organic osmolyte release did not require protein tyrosine phosphorylation, active p21(rho), or phosphatidylinositol 3-kinase activity and was insensitive to Cl(-) channel blockers. Treatment of the cells with putative organic anion transporter inhibitors reduced the release of taurine only partially or was found to be ineffective. The efflux was blocked by a subclass of organic cation transporter (OCT) inhibitors (cyanine-863 and decynium-22) but not by other OCT inhibitors (cimetidine, quinine, and verapamil). Brief treatment of the cells with phorbol esters potentiated the cell swelling-induced taurine efflux, whereas addition of the protein kinase C (PKC) inhibitor GF109203X largely inhibited the response, suggesting that PKC is involved. Increasing the level of intracellular Ca(2+) by using A-23187- or Ca(2+)-mobilizing hormones, however, did not affect the magnitude of the response. Taken together, the results indicate that the hypotonicity-induced efflux of organic osmolytes is independent of VRAC and involves a PKC-dependent step.  相似文献   

18.
The effects of human red cell glycophorin A (GPA) on the translocation to the plasma membrane and anion transport activity of the human erythrocyte anion transporter (band 3; AE1) have been examined using the Xenopus oocyte expression system. We show that band 3 accumulates steadily at the oocyte surface with time in the presence or absence of GPA, but this occurs more quickly when GPA is coexpressed. The amount of band 3 at the surface is determined by the concentrations of band 3 and GPA cRNA that are injected, with a higher proportion of total band 3 being translocated to the surface in the presence of GPA cRNA. The increased expression of DNDS-sensitive chloride transport is highly specific to GPA, and is not observed when the cRNA to the putative glycophorin E or a very high concentration of the cRNA to glycophorin C are coexpressed with band 3 in oocytes.We thank Dr. Kay Ridgwell and Charlotte Ratcliffe for supplying plasmids and Dr. David Anstee for antibodies. This work was supported by grants from the Medical Research Council.  相似文献   

19.
Intracellular pH homeostasis and intracellular Cl(-) concentration in cardiac myocytes are regulated by anion exchange mechanisms. In physiological extracellular Cl(-) concentrations, Cl(-)/HCO(3)(-) exchange promotes intracellular acidification and Cl(-) loading sensitive to inhibition by stilbene disulfonates. We investigated the expression of AE anion exchangers in the AT-1 mouse atrial tumor cell line. Cultured AT-1 cells exhibited a substantial basal Na(+)-independent Cl(-)/HCO(3)(-) (but not Cl(-)/OH(-)) exchange activity that was inhibited by DIDS but not by dibenzamidostilbene disulfonic acid (DBDS). AT-1 cell Cl(-)/HCO(3)(-) activity was stimulated two- to threefold by extracellular ATP and ANG II. AE mRNAs detected by RT-PCR in AT-1 cells included brain AE3 (bAE3), cardiac AE3 (cAE3), AE2a, AE2b, AE2c1, AE2c2, and erythroid AE1 (eAE1), but not kidney AE1 (kAE1). Cultured AT-1 cells expressed AE2, cAE3, and bAE3 polypeptides, which were detected by immunoblot and immunocytochemistry. An AE1-like epitope was detected by immunocytochemistry but not by immunoblot. Both bAE3 and cAE3 were present in intact AT-1 tumors. Cultured AT-1 cells provide a useful system for the study of mediators and regulators of Cl(-)/HCO(3)(-) exchange activity in an atrial cell type.  相似文献   

20.
The cellular level of the organic osmolyte taurine is a balance between active uptake and passive leak via a volume sensitive pathway. Here, we demonstrate that NIH3T3 mouse fibroblasts express a saturable, high affinity taurine transporter (TauT, Km = 18 microm), and that taurine uptake via TauT is a Na+- and Cl(-)-dependent process with an apparent 2.5 : 1 : 1 Na+/Cl-/taurine stoichiometry. Transport activity is reduced following acute administration of H2O2 or activators of protein kinases A or C. TauT transport activity, expression and nuclear localization are significantly increased upon serum starvation (24 h), exposure to tumour necrosis factor alpha (TNFalpha; 16 h), or hyperosmotic medium (24 h); conditions that are also associated with increased localization of TauT to the cytosolic network of microtubules. Conversely, transport activity, expression and nuclear localization of TauT are reduced in a reversible manner following long-term exposure (24 h) to high extracellular taurine concentration. In contrast to active taurine uptake, swelling-induced taurine release is significantly reduced following preincubation with TNFalpha (16 h) but unaffected by high extracellular taurine concentration (24 h). Thus, in NIH3T3 cells, (a) active taurine uptake reflects TauT expression; (b) TauT activity is modulated by multiple stimuli, both acutely, and at the level of TauT expression; (c) the subcellular localization of TauT is regulated; and (d) volume-sensitive taurine release is not mediated by TauT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号