首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Y K Doi  M Banba  A Vertut-Do? 《Biochemistry》1991,30(23):5769-5777
The interaction of pig plasma gelsolin (G) and actin (A) was examined by using photoreactive 4-maleimidobenzophenone-actin (BPM-actin) in which BPM was previously conjugated to Cys-374 of actin through the maleimide moiety. In the presence of micromolar [Ca2+], the major cross-linked product observed after irradiation of the mixture of gelsolin (82 kDa) and actin (42 kDa) had an apparent molecular mass of 130 kDa although gelsolin predominantly existed in the form of an A2G complex (170 kDa). No cross-linked product was detected in the absence of Ca2+. BPM-actin itself did not give any cross-linked product. By use of fluorescent-labeled gelsolin, the cross-linked 130 kDa was shown to be an AG complex. The cross-linked complex was also formed from the A2G complex after removal of Ca2+ by [ethylenebis-(oxyethylenenitrilo)]tetraacetic acid (EGTA) followed by irradiation, indicating that it was the EGTA-resistant AG complex that was cross-linked. The results show that Cys-374 at the C-terminal segment of actin in the EGTA-resistant AG complex is 9-10 A apart from gelsolin. Furthermore, it was shown that the EGTA-resistant actin molecule once incorporated in the A2G complex did not exchange with free actin in the presence of Ca2+. This was also supported by the effect of phosphatidylinositol 4,5-bisphosphate, which did not dissociate the EGTA-resistant actin molecule from the A2G complex in the presence of Ca2+, but did after removal of Ca2+.  相似文献   

2.
Y Doi  Y Kanatani  F Kim 《FEBS letters》1992,301(1):99-102
It has been shown that the EGTA-resistant actin, one of the two actin molecules associated to gelsolin, can be predominantly cross-linked to gelsolin by benzophenone-4-maleimide (BPM), a photoaffinity-labeling reagent, which was conjugated to Cys-374 of actin prior to cross-linking (Doi, Y., Banba, M. and Vertut-Do?, A. (1991) Biochemistry 30, 5769-5777). When a chymotryptic digest of gelsolin containing the amino-terminal 15-kDa fragment was mixed with BPM-actin (42 kDa) and irradiated for cross-linking, a band of 58 kDa appeared on SDS-PAGE which was shown to contain actin molecule by using fluorescently labeled actin. The amino-terminal sequence of the 58-kDa complex was identical to that of gelsolin, confirming that the amino-terminal segment (residues 1-133) of pig plasma gelsolin lies closely to Cys-374 of actin in the EGTA-resistant complex.  相似文献   

3.
The binary complex of pig plasma gelsolin with Mg2+-G-actin in ATP and ADP   总被引:1,自引:0,他引:1  
H E Harris 《FEBS letters》1988,233(2):359-362
Pig plasma gelsolin combined with Mg-G-actin at less than 10(-8) M Ca2+ to yield a binary complex. Complexes formed from G-actin with bound ATP or ADP. They contained approx. 1 mol of non-exchangeable nucleotide per mol of actin. ATP hydrolysis was not coupled to binary complex formation, but ATP in the complex hydrolysed very slowly. The nucleotide in the binary complex behaved like one of the two nucleotide molecules in the ternary complex (two actin monomers to one gelsolin), but the actin-gelsolin interaction was weaker in the binary complex.  相似文献   

4.
New states of actomyosin   总被引:6,自引:0,他引:6  
Unstained frozen hydrated samples of myosin subfragment 1 (S-1) cross-linked to actin with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide have been examined by electron microscopy in an effort to probe structural states of the attached cross-bridge. The cross-linked complex in the absence of ATP has a rigor-like appearance. In contrast, both in the presence of ATP and after the N, N'-p-phenylenedimaleimide (pPDM) bridging of the reactive thiols of S-1, the covalently attached cross-bridges of the acto X S-1 complex appear more disordered and no longer assume the characteristic rigor 45 degrees angle with the actin filaments. The images both in the presence and absence of ATP bear a striking resemblance to those obtained by negative staining of the cross-linked acto X S-1 complex (Craig, R., Greene, L. E. & Eisenberg, E. (1985) Proc. Natl. Acad. Sci. U.S. A. 82, 3247-3251). The actin-bound pPDM S-1 complex, formed by treating the cross-linked complex with pPDM in the presence of ATP, is an expected analog of the weakly bound cross-bridge state. The disordered appearance of S-1 molecules of the cross-linked complex in the presence of ATP and after pPDM treatment may reflect the structural state of the weakly bound cross-bridge.  相似文献   

5.
Functional studies that distinguish free from actin-bound gelsolin based on the ability of the former to sever actin filaments reveal that the binding of actin monomers to gelsolin is highly cooperative and can be prevented by prior incubation of actin with vitamin D-binding protein (DBP), even though the apparent affinity of gelsolin for actin is 50-fold greater than that of DBP. Measurements of actin binding by immunoprecipitation and pyrene-actin fluorescence establish that DBP-actin complexes do not bind to gelsolin and that DBP removes one of the actin monomers in a 2:1 actin-gelsolin complex. These studies may explain why DBP-actin complexes exist in blood plasma in vivo in the presence of free gelsolin and suggest that the interaction of gelsolin with actin in cells and plasma may be regulated in part by actin monomer binding proteins.  相似文献   

6.
H E Harris 《Biochemistry》1985,24(23):6613-6618
Actin and plasma gelsolin were covalently cross-linked with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Two major intermolecularly linked products were identified on polyacrylamide gels. By use of 14C-labeled actin and 125I-labeled gelsolin, these were shown to be the 1:1 and 2:1 complexes of actin with gelsolin, respectively. The higher molecular weight complex predominated under all conditions tested including the presence and absence of Ca2+. In titration experiments in which actin at different concentrations was reacted with a fixed concentration of gelsolin, end points were obtained for the formation of both cross-linked species at about two actins per gelsolin, implying that a 2:1 noncovalent complex is cross-linked. In 0.1 mM Ca2+, the extent of cross-linking was independent of protein concentration down to 50 nM gelsolin. At low Ca2+ concentrations (less than 10(-8)M), the extent of cross-linking was very much reduced at micromolar gelsolin and fell to zero at about 100 nM gelsolin. The binding of actin to gelsolin to give a cross-linkable complex is therefore very strong at 0.1 mM Ca2+ but much weaker at low Ca2+ concentrations.  相似文献   

7.
The beta-thymosins are intracellular monomeric (G-)actin sequestering proteins forming 1:1 complexes with G-actin. Here, we analysed the interaction of thymosin beta(4) with F-actin. Thymosin beta(4) at 200 microM was chemically cross-linked to F-actin. In the presence of phalloidin, the chemically cross-linked actin:thymosin beta(4) complex was incorporated into F-actin. These mixed filaments were of normal appearance when inspected by conventional transmission electron microscopy after negative staining. We purified the chemically cross-linked actin:thymosin beta(4) complex, which polymerised only when phalloidin and the gelsolin:2-actin complex were present simultaneously. Using scanning transmission electron microscopy, the mass-per-length of control and actin:thymosin beta(4) filaments was found to be 16.0(+/-0.8) kDa/nm and 18.0(+/-0.9) kDa/nm, respectively, indicating an increase in subunit mass of 5.4 kDa. Analysis of the helical parameters revealed an increase of the crossover spacing of the two right-handed long-pitch helical strands from 36.0 to 40.5 nm. Difference map analysis of 3-D helical reconstruction of control and actin:thymosin beta(4) filaments yielded an elongated extra mass. Qualitatively, the overall size and shape of the difference mass were compatible with published data of the atomic structure of thymosin beta(4). The deduced binding sites of thymosin beta(4) to actin were in agreement with those identified previously. However, parts of the difference map might represent subtle conformational changes of both proteins occurring upon complex formation.  相似文献   

8.
In our previous study [Chalovich, J. M., Greene, L. E., & Eisenberg, E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4909-4913], myosin subfragment 1 that was modified by having its two reactive thiol groups cross-linked by N,N'-p-phenylenedimaleimide (pPDM) was found to resemble the myosin subfragment 1-adenosine 5'-triphosphate (S-1.ATP) complex in its interaction with actin. In the present study, we examined the effect of actin on adenosine 5'-diphosphate (ADP) trapped at the active site of pPDM.S-1. Our results indicate first that, in the presence of actin, ADP is no longer trapped at the active site but exchanges rapidly with free nucleotide. Different pPDM.S-1.nucleotide complexes were then formed by exchanging nucleotide into the active site of pPDM.S-1 in the presence of actin. The binding of pPDM.S-1.ATP or pPDM.S-1.PPi to actin is virtually identical with that of unmodified S-1 in the presence of ATP. Specifically, at mu = 18 mM, 25 degrees C, pPDM.S-1.ATP or pPDM.S-1.PPi binds to unregulated actin with the same affinity as does S-1.ATP, and this binding does not appear to be affected by troponin-tropomyosin. On the other hand, pPDM.S-1.ADP and pPDM.S-1 with no bound nucleotide both show a small, but significant, difference between their binding to actin and the binding of S-1.ATP; pPDM.S-1 and pPDM.S-1.ADP both bind about 2- to 3-fold more strongly to unregulated actin than does S-1.ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Electron microscopy studies have shown that the structure of the complex of myosin subfragment 1 (S-1) cross-linked to actin with 1-ethyl-3-[3-(dimethyl-amino) propyl] carbodiimide is very different in the presence and absence of ATP (Craig, R., Greene, L. E., and Eisenberg, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3247-3251). More recent studies have found that the structure of the cross-linked complex between S-1 modified extensively with N-ethylmaleimide (NEM.S-1) and actin resembles that of the rigor complex both in the presence and absence of ATP, whereas the structure of the cross-linked complex between S-1 modified with N',N'-p-phenylenedimaleimide (pPDM.S-1) and actin resembles that of the cross-linked actin.S-1 complex in the presence of ATP. In the present study, we have obtained biochemical evidence supporting these results. The conformation of the different cross-linked actin.S-1 complexes was determined by studying their effect on the troponin-tropomyosin-actin complex (regulated actin). The basis of this probe for conformation is that S-1.ATP, which is in the weak-binding conformation, interacts very differently with regulated actin than S-1 or S-1.ADP, which are in the strong-binding conformation. We find that both in the presence and absence of ATP, cross-linked NEM.S-1 appears to be in the strong-binding conformation, whereas cross-linked pPDM.S-1 appears to be shifted toward the weak-binding conformation. In contrast, cross-linked unmodified S-1 appears to be in the strong-binding conformation in the presence of ADP and the weak-binding conformation in the presence of ATP. Therefore, in agreement with electron microscopy studies, the cross-linked actin.S-1 complex appears to be able to alternate between the weak-binding and strong-binding conformation during the cross-bridge cycle.  相似文献   

10.
Actin dimer cross-linked along the long pitch of the F-actin helix by N-(4-azido)-2-nitrophenyl (ANP) was purified by gel filtration. Purified dimers were found to polymerize on increasing the ionic strength, although at reduced rate and extent in comparison with native actin. Purified actin dimer interacts with the actin-binding proteins (ABPs) deoxyribonuclease I (DNase I) and gelsolin segment-1 (G1) as analyzed by gel filtration and native gel electrophoresis. Complex formation of the actin dimer with these ABPs inhibits its ability to polymerize. The interaction with rabbit skeletal muscle myosin subfragment 1 (S1) was analyzed for polymerized actin dimer and dimer complexed with gelsolin segment 1 or DNase I by measurement of the actin-stimulated myosin S1-ATPase and gel filtration. The data obtained indicate binding of subfragment 1 to actin dimer, albeit with considerably lower affinity than to F-actin. Polymerized actin dimer was able to stimulate the S1-ATPase activity to about 50% of the level of native F-actin. In contrast, the actin dimer complexed to DNase I or gelsolin segment 1 or to both proteins was unable to significantly stimulate the S1-ATPase. Similarly, G1:dimer complex at 20 microM stimulated the rate of release of subfragment 1 bound nucleotide (mant-ADP) only 1.6-fold in comparison to about 9-fold by native F-actin at a concentration of 0.5 microM. Using rapid kinetic techniques, a dissociation constant of 2.4 x 10 (-6) M for subfragment 1 binding to G1:dimer was determined in comparison to 3 x 10 (-8) M for native F-actin under identical conditions. Since the rate of association of subfragment 1 to G1:dimer was considerably lower than to native F-actin, we suspect that the ATP-hydrolysis by S1 was catalyzed before its association to the dimer. These data suggest an altered, nonproductive mode for the interaction of subfragment 1 with the isolated long-pitch actin dimer.  相似文献   

11.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.  相似文献   

12.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

13.
Actin-gelsolin interactions. Evidence for two actin-binding sites   总被引:26,自引:0,他引:26  
We have used a fluorescence enhancement of actin labeled with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-actin) to study the interactions between rabbit skeletal muscle G-actin and either purified platelet gelsolin or a 130-kDa binary complex of platelet actin and gelsolin that is stable in EGTA and can be purified from human platelets. We have delineated four binding reactions. The exchange of Mg2+ for Ca2+ on the divalent cation-binding site of NBD-actin gives a small fluorescence increase. Binding of monomeric NBD-actin to the binary complex results in a 2.5-fold increase in the emission at 530 nm in the presence of Ca2+ and a 2-fold increase in the presence of EGTA. Titration experiments show that, under nonpolymerizing conditions, one additional actin is bound to the 130-kDa species to form a ternary complex. This binding is Ca2+-sensitive. Purified gelsolin does not appear to bind to NBD-actin in the presence of EGTA, as determined by fluorescence enhancement, gel filtration, or sedimentation measurements, but the addition of Ca2+ promotes rapid binding with a 1.6-1.7-fold enhancement of the emission intensity. A comparison of the relative fluorescence yields/NBD-actin molecule for a binary complex of gelsolin and one NBD-actin, a ternary complex of gelsolin and two NBD-actin molecules, and a ternary complex with an unlabeled actin in the EGTA-stable site and an NBD-actin in the second site indicates that the first NBD-actin, in the EGTA-stable site, does not give a fluorescence increase on binding but the second one does. Finally, we have demonstrated that one molecule of 45Ca2+ is "trapped" when the binary complex is formed and cannot be removed by EGTA. A summary model for these reactions is presented that indicates the interaction between actin and gelsolin is not a freely reversible Ca2+-controlled reaction.  相似文献   

14.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

15.
One interferon gamma receptor binds one interferon gamma dimer   总被引:3,自引:0,他引:3  
We investigated the stoichiometry of the interferon gamma and interferon gamma receptor interaction, using recombinant interferon gamma and recombinant soluble interferon gamma receptor, applying chemical cross-linking and chromatographic techniques, and analyzing the resulting products in denaturing polyacrylamide gels. Interferon gamma cross-linked to itself produced a major band of an apparent molecular mass of 34 kDa, which suggests that it exists as a dimer in physiological buffer and which agrees with published data. Soluble interferon gamma receptor cross-linked to itself produced mainly a 28-kDa band, suggesting that the interferon gamma receptor exists as a monomer. Interferon gamma cross-linked to the soluble interferon gamma receptor resulted in the formation of two main products of apparent molecular masses of 60 and 44 kDa. The predominant 60-kDa band resulted from the cross-linking of one interferon gamma dimer (34 kDa) to one interferon gamma receptor molecule (27 kDa). The 44-kDa band was formed by the cross-linking of one interferon gamma molecule to one interferon gamma receptor. Kinetic studies showed that the cross-linking of interferon gamma dimer to the soluble receptor proceeds through the intermediate formed by cross-linking one molecule of the interferon gamma dimer to the receptor. Reducing and dissociating agents inhibited complex formation. When chromatographed on Sephadex G-100, interferon gamma was eluted as a protein of 34-kDa molecular mass, the soluble interferon gamma receptor as a protein of 40 kDa, and their mixture was eluted in one peak corresponding to an apparent molecular mass of 73 kDa. Sodium dodecyl sulfate-polyacrylamide gel analysis of the eluted mixture showed the presence of both interferon gamma and interferon gamma receptor at a ratio of 2:1. The found results suggest that the interferon gamma receptor binds interferon gamma as a dimer.  相似文献   

16.
Khaitlina S  Walloscheck M  Hinssen H 《Biochemistry》2004,43(40):12838-12845
The basic mechanism for the nucleating effect of gelsolin on actin polymerization is the formation of a complex of gelsolin with two actin monomers. Probably due to changes in the C-terminal part of gelsolin, a stable ternary complex is only formed at [Ca(2+)] >10(-5) M [Khaitlina, S., and Hinssen, H. (2002) FEBS Lett. 521, 14-18]. Therefore, we have studied the binding of actin monomer to the isolated C-terminal half of gelsolin (segments 4-6) over a wide range of calcium ion concentrations to correlate the conformational changes to the complex formation. With increasing [Ca(2+)], the apparent size of the C-terminal half as determined by gel filtration was reduced, indicating a transition into a more compact conformation. Moreover, Ca(2+) inhibited the cleavage by trypsin at Lys 634 within the loop connecting segments 5 and 6. Though the inhibitory effect was observed already at [Ca(2+)] of 10(-7) M, it was enhanced with increasing [Ca(2+)], attaining saturation only at >10(-4) M Ca(2+). This indicates that the initial conformational changes are followed by additional molecular transitions in the range of 10(-5)-10(-4) M [Ca(2+)]. Consistently, preformed complexes of actin with the C-terminal part of gelsolin became unstable upon lowering the calcium ion concentrations. These data provide experimental support for the role of the type 2 Ca-binding sites in gelsolin segment 5 proposed by structural studies [Choe et al. (2002) J. Mol. Biol. 324, 691]. We assume that the observed structural transitions contribute to the stable binding of the second actin monomer in the ternary gelsolin-actin complex.  相似文献   

17.
Stable oligomers of filamentous actin were obtained by cross-linking F-actin with 1,4-N,N'-phenylenedimaleimide and depolymerization with excess segment-1 of gelsolin. Segment-1-bound and cross-linked actin oligomers containing either two or three actin subunits were purified and shown to nucleate actin assembly. Kinetic assembly data from mixtures of monomeric actin and the actin oligomers fit a nucleation model where cross-linked actin dimer or trimer reacts with an actin monomer to produce a competent nucleus for filament assembly. We report the three-dimensional structure of the segment-1-actin hexamer containing three actin subunits, each with a tightly bound ATP. Comparative analysis of this structure with twelve other actin structures provides an atomic level explanation for the preferential binding of ATP by the segment-1-complexed actin. Although the structure of segment-1-bound actin trimer is topologically similar to the helical model of F-actin (1), it has a distorted symmetry compared with that of the helical model. This distortion results from intercalation of segment-1 between actin protomers that increase the rise per subunit and rotate each of the actin subunits relative to their positions in F-actin. We also show that segment-1 of gelsolin is able to sever actin filaments, although the severing activity of segment-1 is significantly lower than full-length gelsolin.  相似文献   

18.
Severin is a gelsolin prototype   总被引:2,自引:0,他引:2  
A number of Ca2(+)-activated actin filament severing proteins have been identified in eukaryotic cells of diverse lineages. Gelsolin and villin, with molecular mass of about 80-90 kDa, and severin and fragmin, with molecular mass of about 40 kDa, have been isolated from vertebrates and invertebrates, respectively. We report here a direct comparison of the functional properties of gelsolin and severin, and the finding that the actin filament severing activity of severin, like that of gelsolin, is inhibited by polyphosphoinositides. However, severin does not nucleate actin filament assembly as well as gelsolin. These characteristics are very similar to those ascribed to the NH2-terminal half of gelsolin, supporting the idea that they are evolutionarily related. Regulation of severin by polyphospholipids raises the possibility that it may participate in agonist-stimulated regulation of the actin cytoskeleton in Dictyostelium discoideum.  相似文献   

19.
Ca(2+) of 0.3-1.0 microM induces both the exposure of tryptic cleavage sites within the gelsolin molecule inaccessible in the Ca-free conformation, and binding of one actin monomer to the N-terminal half of gelsolin. On the other hand, gelsolin-induced enhancement of pyrene actin fluorescence was observed only above 50 microM Ca(2+), and a ternary actin/gelsolin complex preformed in 200 microM Ca(2+) was stable only above 30 microM Ca(2+). These results provide direct evidence for Ca-induced transitions from closed to open conformation of the gelsolin molecule in the range of 3 x 10(-7) to 10(-6) M Ca(2+). They also suggest that Ca(2+)>10(-5) M is required to stabilize actin-actin contacts in the 2:1 actin/gelsolin complex.  相似文献   

20.
T Hozumi 《Biochemistry》1992,31(41):10070-10073
It is well known that the structural interactions between S-1 moieties of myosin molecules ("cross bridges") and actin molecules in polymerized ("F") form are thought to underlie muscle contraction. It is surmised that such interactions are unitary (actin:S-1 = 1:1), but actual demonstration thereof is handicapped by intrinsic properties of the proteins. Recently, it has been reported that chemically modified [with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)] actin maintains its monomeric ("G") form and makes a stable unitary complex with S-1 but does not activate the S-1 ATPase [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. However, we recently showed that when MBS-G-actin and S-1 are covalently cross-linked by 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), ATPase activity is restored [Hozumi, T. (1991) Biochem. Int. 23, 835-843]. Here we investigated the interface between MBS-G-actin and S-1 using the techniques of tryptic digestion and EDC-cross-linking. MBS-G-actin specifically protected the N-terminal region of S-1 heavy chain against tryptic cleavage at the 25 kDa/50 kDa junction, which is different from the effect that a protomer within F-actin has on the protection of the 25 kDa/50 kDa junction. In addition, the cross-linking pattern between MBS-G-actin and S-1 was different from that between F-actin and S-1. When MBS-G actin was cross-linked to trypsin-treated S-1, no cross-linked product was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号