首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the main factors affecting the population dynamics of Svalbard reindeer, we analysed 21 yr of annual censuses, including data on population size, recruitment rate (calves per female) and mortality (number of deaths), from the Reindalen reindeer population. In accordance with previous studies on population dynamics of Svalbard reindeer, we found large inter-annual variation in population size, mortality and recruitment rates within the study area. Population size decreased in years with low recruitment rate as well as high winter mortality and vice versa. Apparently. the fluctuations were due to both direct density-dependent food limitation and variation in winter climate associated with high precipitation and icing of the feeding range. We found no delayed density-dependence or effect of climatic conditions during summer on the population dynamics. The mortality during die-off years was mainly of calves and very old individuals, indicating that the population was more vulnerable to high die oft in years following high recruitment rate. These results suggest an unstable interaction between the reindeer population and its food supply in these predator-free environments.  相似文献   

2.
A common by-product of human harvesting is orphaning of calves in autumn. Despite this, there are few studies in northern and temperate ungulates evaluating the fate of orphaned calves and the potential benefits to offspring and costs to mothers of post-weaning maternal care. We manipulated orphaning and forage distribution during winter for two herds of reindeer (Rangifer tarandus): one nonfed and the other supplementally fed to increase level of interference competition. Both herds consisted of females with and without calves at heel and orphaned calves. We measured survival and somatic losses during winter and distances between mother–calves and adult females–orphans within the herds. All females survived the winter, and there was no evidence of post-weaning maternal cost in terms of female’s mass loss. The winter mortality among calves was negligible and did not differ between orphans as compared to nonorphans. However, nonorphaned calves lost less mass and stayed closer to their mothers than orphans to adult females, suggesting that increased mortality might occur in harsher winters. This tended to be more marked in the fed group where interference competition was more likely due to feed being concentrated both in space and time. Reduced mass loss in nonorphans is therefore most likely due to mothers sharing and defending feeding resources and protecting their offspring from harassment by other herd members during their first winter. We conclude that hunting practise of northern and temperate ungulates where females having calf/calves at heel are intentionally or non-intentionally harvested, may have demographic side effects at least in harsh winters.  相似文献   

3.
Migratory prey is a widespread phenomenon that has implications for predator–prey interactions. By creating large temporal variation in resource availability between seasons it becomes challenging for carnivores to secure a regular year‐round supply of food. Some predators may respond by following their migratory prey, however, most predators are sedentary and experience strong seasonal variation in resource availability. Increased predation on alternative prey may dampen such seasonal resource fluctuations, but reduced reproduction rates in predators is a predicted consequence of migratory primary prey behavior that has received little empirical attention. We used data from 23 GPS collared Eurasian lynx Lynx lynx monitored during 2007–2013 in northern Norway, to examine how spatio‐temporal variation in the migratory behavior of semi‐domestic reindeer Rangifer tarandus influences lynx spatial organization and reproductive success using estimates of seasonal home range overlap and breeding success. We found that lynx of both sexes maintained seasonally stable home ranges and exhibited site fidelity across years, independent of whether they had access to reindeer throughout the year or experienced a scarcity of reindeer in winter due to migration. However, lynx without access to reindeer in winter showed a decreased probability of reproducing and a tendency for lowered kitten survival into their first winter, when compared to female lynx with reindeer available year around. This supports the hypothesis that sedentary predators experience demographic costs in systems with migratory primary prey. Changes in the migratory behavior of ungulates, including disrupted migrations, is therefore likely to have bottom–up effects on the population dynamics of sedentary predators as well as the previously documented consequences for ungulate population dynamics.  相似文献   

4.
5.
Logging negatively affects the threatened forest-dwelling caribou (Rangifer tarandus caribou) through its positive effects on large predator populations. As recruitment is a key component of caribou population growth rate, we assessed calving rates of females and calf survival rates during the most critical period for calf survival, the calving period. We also identified causes of calf mortality and investigated the influence of predation risk, food availability, and human disturbance on habitat selection of females during the calving period at both the home-range and forest stand scales. We hypothesized that caribou should display habitat selection patterns to reduce predation risk at both scales. Using telemetry, we followed 22 females and their calves from 2004 to 2007 in a highly managed study area in Québec, Canada. Most females (78.5 ± 0.05 [SE]) gave birth each year, but only 46.3 ± 8.0% of the calves survived during the first 50 days following birth, and 57.3 ± 14.9% of them died from black bear (Ursus americanus) predation. At the home-range scale, caribou selected calving areas located at upper slope positions and avoided high road density areas. Surprisingly, they also selected the forested habitat type having the lowest lateral cover (mixed and deciduous stands) while avoiding the highest cover (regenerating conifer stands). At the forest stand scale, caribou selected areas located at relatively high elevations and with a lower basal area of black spruce trees. The selection of upper slope positions likely favored spatial segregation between calving females and wolves (Canis lupus) but not black bear. Our results suggest that calving females used areas from which they could visually detect approaching predators. While wolf avoidance appeared to be effective in a highly managed landscape, caribou did not appear to have adjusted their predator avoidance strategy to the recent increase in black bear abundance, who have benefited from increased food abundance. This situation requires focused attention from wildlife managers as logging activities are progressing towards the north within the core of forest-dwelling caribou range. © 2011 The Wildlife Society.  相似文献   

6.
Reindeer/caribou (Rangifer tarandus), which constitute a biological resource of vital importance for the physical and cultural survival of Arctic residents, and inhabit extremely seasonal environments, have received little attention in the global change debate. We investigated how body weight and growth rate of reindeer calves were affected by large-scale climatic variability [measured by the North Atlantic Oscillation (NAO) winter index] and density in one population in central Norway. Body weights of calves in summer and early winter, as well as their growth rate (summer to early winter), were significantly influenced by density and the NAO index when cohorts were in utero. Males were heavier and had higher absolute growth than females, but there was no evidence that preweaning condition of male and female calves were influenced differently by the NAO winter index. Increasing NAO index had a negative effect on calves' body weight and growth rate. Increasing density significantly reduced body weight and growth rate of calves, and accentuated the effect of the NAO winter index. Winters with a higher NAO index are thus severe for reindeer calves in this area and their effects are associated with nutritional stress experienced by the dams during pregnancy or immediately after calving. Moreover, increased density may enhance intra-specific competition and limits food available at the individual level within cohorts. We conclude that if the current pattern of global warming continues, with greater change occurring in northern latitudes and during winter as is predicted, reduced body weight of reindeer calves may be a consequence in areas where winters with a high NAO index are severe. This will likely have an effect on the livelihood of many northern indigenous peoples, both economically and culturally.  相似文献   

7.
Predation is a major limiting factor for most small sedentary caribou (Rangifer tarandus) populations, particularly those that are threatened or endangered across the southern extent of the species’ range. Thus, reducing predation impacts is often a management goal for improving the status of small caribou populations, and lethal predator removal is the primary approach that has been applied. Given that predator control programs are often contentious, other management options that can garner broader public acceptance need to be considered. Substantial calf losses to predation in the few weeks following birth are common for these small caribou populations. Therefore, we employed a novel experimental approach of maternal penning with the goal of reducing early calf mortality in the Chisana Caribou Herd, a declining population in southwest Yukon and adjacent Alaska thought to number around 300 individuals. Maternal penning entailed temporarily holding pregnant females on their native range in a large pen secure from predators from late March through the initial weeks of calf rearing to mid-June. During 2003–2006, we conducted 4 annual penning trials with 17–50 pregnant females each year (n = 146 total), assessed survival of calves born in the pens, and evaluated survival and nutritional effects of penning for females that were held. We also investigated the herd's population dynamics during 2003–2008 to determine effects of maternal penning on calf recruitment and population growth. In addition to information gained during maternal penning, we determined natality and survival patterns via radiotelemetry, conducted autumn age-sex composition surveys each year, and censused the population in mid-October 2003, 2005, and 2007. Based on our penning trials and demographic investigations, we used simulation models to evaluate the effects of maternal penning relative to a population's inherent growth rate (finite rate of increase [λ] without maternal penning) and penning effort (proportion of calves born in penning) to provide perspective on utility of this approach for improving the status of small imperiled caribou populations. Pregnant females held in maternal penning tolerated captivity well in that they exhibited positive nutritional responses to ad libitum feed we provided and higher survival than free-ranging females (0.993 and 0.951 for penned and free-ranging females, respectively). Survival of pen calves from birth to mid-June was substantially higher than that of free-ranging calves ( = 0.950 and 0.376, respectively). This initial period accounted for 76% of the annual calf mortality in the free-ranging population. Pen-born calves maintained their survival advantage over wild-born calves to the end of their first year ( = 0.575 and 0.192, respectively) during years penning occurred. Females in the Chisana Herd were highly productive with 57% producing their first offspring at 2 years of age, and annual natality rates averaging 0.842 calves/female ≥2 years old. Age-specific natality rates exceeded 0.900 for 4–9-year-olds, then exhibited senescent decline to 0.467 by 19 years old. Annual survival of free-ranging adult females and calves averaged 0.892 and 0.184, respectively, over all study years; both were reduced during 2004 because of poor winter survival. We noted reduced nutritional condition of caribou late that winter in that females we captured were lighter than in other years and produced lighter calves. We suspect that the reduced survival during winter 2004 and the observed nutritional characteristics resulted from adverse snow conditions in combination with effects of the extreme drought experienced the previous summer. Age-specific survival of adult females was ≥0.900 through 10 years of age, then declined with age. The Chisana Herd numbered 720 caribou in mid-October 2003, or more than twice that estimated prior to initiating maternal penning, and increased to 766 caribou by mid-October 2007. We calculated that penning added 54.2 yearling recruits, or 40% of calves released from penning. Based on the maternal penning results and the population's vital rates, we determined that the herd would have been stable during 2003–2007 at about 713 caribou without maternal penning; thus, the increase in herd size we observed resulted from maternal penning and was equivalent to the estimate of additional yearling recruits. The improvement in the population trend invoked by maternal penning was limited by the larger than expected population size and resulting low penning effort ( = 11% of calves born in pen). Our simulations corroborated that maternal penning increased population size by the number of additional recruits provided, even at low penning effort, for inherently stable populations. As the inherent rate of increase dropped below λ = 1.000, more of the additional recruits from penning were needed to offset the downward population inertia, thus requiring increased penning effort to reach stability. For populations declining at λ < 0.890, stability could not be achieved with 100% penning effort given the vital rates in our models. Maternal penning in its limited application to date has proven to be broadly popular as a nonlethal management action aimed at reducing initial calf mortality from predation in small caribou populations. However, based on the Chisana program and 3 subsequent efforts elsewhere, improvement in population trends have been modest at best and come at a high financial cost. Given the necessity of maximizing penning effort, maternal penning may have a role in addressing conservation challenges for some small caribou populations that are stable or slowly declining, but its application should be primarily driven by objective assessment of the likelihood of improving population trends rather than popularity relative to other management options.  相似文献   

8.
The rates and causes of juvenile mortality are central features of the dynamics and conservation of large mammals, like woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)), but intrinsic and extrinsic factors may be modified by variations in animal abundance. We tested the influences of population size, climate, calf weight and sex on survival to 6 months of age of 1241 radio-collared caribou calves over three decades, spanning periods of population growth (1979–1997) and decline (2003–2012) in Newfoundland, Canada. Daily survival rates were higher and rose more quickly with calf age during the population growth period compared to the decline. Population size (negatively) and calf weight (positively) affected survival during the decline but neither had a detectable influence during the growth phase. Sex, climate and plant productivity (the latter two derived from the North Atlantic Oscillation and Normalized Difference Vegetation Index, respectively) exerted minimal influence during either phase. Predation was the dominant source of mortality. The mean percentage of calves killed by predators was 30 % higher during the decline compared to the growth phase. Black bears (Ursus americanus) and lynx (Lynx canadensis) were the major predators during the population increase but this changed during the decrease to black bears and coyotes (Canis latrans). Our findings are consistent with the hypothesis that Newfoundland caribou experienced phase-dependent survival mediated proximally by predation and competition for food.  相似文献   

9.
The impact of anthropogenic disturbance on the fitness of prey should depend on the relative effect of human activities on different trophic levels. This verification remains rare, however, especially for large animals. We investigated the functional link between habitat selection of female caribou (Rangifer tarandus) and the survival of their calves, a fitness correlate. This top-down controlled population of the threatened forest-dwelling caribou inhabits a managed forest occupied by wolves (Canis lupus) and black bears (Ursus americanus). Sixty-one per cent of calves died from bear predation within two months following their birth. Variation in habitat selection tactics among mothers resulted in different mortality risks for their calves. When calves occupied areas with few deciduous trees, they were more likely to die from predation if the local road density was high. Although caribou are typically associated with pristine forests, females selected recent cutovers without negative impact on calf survival. This selection became detrimental, however, as regeneration took place in harvested stands owing to increased bear predation. We demonstrate that human disturbance has asymmetrical consequences on the trophic levels of a food web involving multiple large mammals, which resulted in habitat selection tactics with a greater short-term fitness payoff and, therefore, with higher evolutionary opportunity.  相似文献   

10.
Arctic Cervids face considerable challenges in sustaining life in a harsh and highly seasonal environment, and when to forage is a key component of the survival strategy. We predict that a cervid maximizes net intake of energy to change the duration of feeding-ruminating cycles depending on season, and pays no attention to light or other activity-entraining cues. Still, in periods of bad weather it may pay energetically to reduce exposure and heat loss. We investigated environmental impact on the seasonal and daily activity pattern of a food-limited, predator-free arctic deer, the Svalbard reindeer. We found that the reindeer indeed had season-dependent feeding-rumination intervals, with no distinct peaks in activity at sunrise and sunset, as would be expected if animals maximize energy intake rates in predator-free environments. However, they temporarily reduced activity when exposed to low temperature and increased precipitation during winter, possibly to conserve energy. We provide insight into the behavioural strategy of Svalbard reindeer which enables them to cope with such an extreme environment.  相似文献   

11.
Predation, habitat, hunting, and environmental conditions have all been implicated as regulatory mechanisms in ungulate populations. The low-density equilibrium hypothesis predicts that in low-density populations, predators regulate their prey and that the population will not escape unless predation pressure is eased. We evaluated survival of adult and juvenile moose (Alces alces) in north-central Alaska to determine whether or not the population supported the hypothesis. We instrumented adult male and female moose with radiocollars and used aerial observations to track parturition and subsequent survival of juvenile moose. Generalized linear mixed-effects models were used to assess survival. Adult annual survival rates were high (∼89%), but may be negatively influenced by winter conditions. Migratory status did not affect moose survivorship or productivity. Approximately 60% of the calf crop died before 5 months of age. Productivity was significantly lower in the northern section of the study area where there is less high-quality habitat, suggesting that, even in this low-density population, nutrition could be a limiting factor. It appears that predation on young calves, winter weather, and nutritional constraints may be interacting to limit this population. Latent traits, such as overproduction of calves and migratory behavior, which do not currently enhance fitness, may persist within this population so that individuals with these traits can reap benefits when environmental conditions change.  相似文献   

12.
If we want to understand how climate change affects long‐lived organisms, we must know how individuals allocate resources between current reproduction and survival. This trade‐off is affected by expected environmental conditions, but the extent to which density independent (DI) and density dependent (DD) processes interact in shaping individual life histories is less clear. Female reindeer (or caribou: Rangifer tarandus) are a monotocous large herbivore with a circumpolar distribution. Individuals that experience unpredictable and potentially harsh winters typically adopt risk averse strategies where they allocate more resources to building own body reserves during summer and less to reproduction. Such a strategy implies that the females do not reproduce or that they produce fewer or smaller offspring. A risk averse strategy thus results in females with large autumn body reserves, which is known to increase their survival probabilities if the coming winter is harsh. In contrast, females experiencing predictable winters may adopt a more risk prone strategy in which they allocate more resources to reproduction as they do not need as many resources to buffer potentially adverse winter conditions. This study uses a seasonal state‐dependent model showing that DD and DI processes interact to affect the evolution of reproductive strategies and population dynamics for reindeer. The model was run across a wide range of different winter climatic scenarios: One set of simulations where the average and variability of the environment was manipulated and one set where the frequency of good and poor winters increased. Both reproductive allocation and population dynamics of reindeer were affected by a combination of DI and DD processes even though they were confounded (harsh climates resulted in lowered density). Individual strategies responded, in line with a risk sensitive reproductive allocation, to climatic conditions and in a similar fashion across the two climatic manipulations.  相似文献   

13.
Data on nearest neighbours and aggressive behaviour were collected within rutting groups of semi-domesticated reindeer (Rangifer t. tarandus L.) in a 1300-ha pasture in Finnish Lapland, and wild forest reindeer (Rangifer t. fennicus Lönnb.) in a 15-ha enclosure in Central Finland. Adult cows of forest reindeer charged yearling males, yearling females and calves in that order of decreasing frequency. Semi-domesticated reindeer cows rushed yearling females more often than they did one another. One suggested influence of antagonism by cows were the observed intragroup associations of yearling females. Cows were tolerant toward their own yearling females, but not toward their own yearling males. Although no maternal aggression toward calves was found, male calves moved away more often from their mothers than did female calves during the post-rut period.  相似文献   

14.
We studied moose (Alces alces) survival, physical condition, and abundance in a 3-predator system in western Interior Alaska, USA, during 2001–2007. Our objective was to quantify the effects of predator treatments on moose population dynamics by investigating changes in survival while evaluating the contribution of potentially confounding covariates. In May 2003 and 2004, we reduced black bear (Ursus americanus) and brown bear (U. arctos) numbers by translocating bears ≥240 km from the study area. Aircraft-assisted take reduced wolf (Canis lupus) numbers markedly in the study area during 2004–2007. We estimated black bears were reduced by approximately 96% by June 2004 and recovered to within 27% of untreated numbers by May 2007. Brown bears were reduced approximately 50% by June 2004. Late-winter wolf numbers were reduced by 75% by 2005 and likely remained at these levels through 2007. In addition to predator treatments, moose hunting closures during 2004–2007 reduced harvests of male moose by 60% in the study area. Predator treatments resulted in increased calf survival rates during summer (primarily from reduced black bear predation) and autumn (primarily from reduced wolf predation). Predator treatments had little influence on survival of moose calves during winter; instead, calf survival was influenced by snow depth and possibly temperature. Increased survival of moose calves during summer and autumn combined with relatively constant winter survival in most years led to a corresponding increase in annual survival of calves following predator treatments. Nonpredation mortalities of calves increased following predator treatments; however, this increase provided little compensation to the decrease in predation mortalities resulting from treatments. Thus, predator-induced calf mortality was primarily additive. Summer survival of moose calves was positively related to calf mass (β > 0.07, SE = 0.073) during treated years and lower (β = −0.82, SE = 0.247) for twins than singletons during all years. Following predator treatments, survival of yearling moose increased 8.7% for females and 21.4% for males during summer and 2.2% for females and 15.6% for males during autumn. Annual survival of adult (≥2 yr old) female moose also increased in treated years and was negatively (β = −0.21, SE = 0.078) related to age. Moose density increased 45%, from 0.38 moose/km2 in 2001 to 0.55 moose/km2 in 2007, which resulted from annual increases in overall survival of moose, not increases in reproductive rates. Indices of nutritional status remained constant throughout our study despite increased moose density. This information can be used by wildlife managers and policymakers to better understand the outcomes of predator treatments in Alaska and similar environments. © 2011 The Wildlife Society.  相似文献   

15.
Partial migration is widespread in ungulates, yet few studies have assessed demographic mechanisms for how these alternative strategies are maintained in populations. Over the past two decades the number of resident individuals of the Ya Ha Tinda elk herd near Banff National Park has been increasing proportionally despite an overall population decline. We compared demographic rates of migrant and resident elk to test for demographic mechanisms partial migration. We determined adult female survival for 132 elk, pregnancy rates for 150 female elk, and elk calf survival for 79 calves. Population vital rates were combined in Leslie‐matrix models to estimate demographic fitness, which we defined as the migration strategy‐specific population growth rate. We also tested for differences in factors influencing risk of mortality between migratory strategies for adult females using Cox‐proportional hazards regression and time‐varying covariates of exposure to forage biomass, wolf predation risk, and group size. Despite higher pregnancy rates and winter calf weights associated with higher forage quality, survival of migrant adult females and calves were lower than resident elk. Resident elk traded high quality food to reduce predation risk by selecting areas close to human activity, and by living in group sizes 20% larger than migrants. Thus, residents experienced higher adult female survival and calf survival, but lower pregnancy and calf weights. Cause‐specific mortality of migrants was dominated by wolf and grizzly bear mortality, whereas resident mortality was dominated by human hunting. Demographic differences translated into slightly higher (2–3%), but non‐significant, resident population growth rate compared to migrant elk, suggesting demographic balancing between resident strategies during our study. Despite statistical equivalence, our results are also consistent with slow long‐term declines in migrants because of high predation because of higher wolf‐caused mortality in migrants. These results emphasize that migrants and residents will make different tradeoffs between forage and risk may affect the demographic balance of partially migratory populations, which may explain recent declines in migratory behavior in many ungulate populations around the world.  相似文献   

16.
1.?Understanding the interaction among predators and between predation and climate is critical to understanding the mechanisms for compensatory mortality. We used data from 1999 radio-marked neonatal elk (Cervus elaphus) calves from 12 populations in the north-western United States to test for effects of predation on neonatal survival, and whether predation interacted with climate to render mortality compensatory. 2.?Weibull survival models with a random effect for each population were fit as a function of the number of predator species in a community (3-5), seven indices of climatic variability, sex, birth date, birth weight, and all interactions between climate and predators. Cumulative incidence functions (CIF) were used to test whether the effects of individual species of predators were additive or compensatory. 3.?Neonatal elk survival to 3 months declined following hotter previous summers and increased with higher May precipitation, especially in areas with wolves and/or grizzly bears. Mortality hazards were significantly lower in systems with only coyotes (Canis latrans), cougars (Puma concolor) and black bears (Ursus americanus) compared to higher mortality hazards experienced with gray wolves (Canis lupus) and grizzly bears (Ursus horribilis). 4.?In systems with wolves and grizzly bears, mortality by cougars decreased, and predation by bears was the dominant cause of neonatal mortality. Only bear predation appeared additive and occurred earlier than other predators, which may render later mortality by other predators compensatory as calves age. Wolf predation was low and most likely a compensatory source of mortality for neonatal elk calves. 5.?Functional redundancy and interspecific competition among predators may combine with the effects of climate on vulnerability to predation to drive compensatory mortality of neonatal elk calves. The exception was the evidence for additive bear predation. These results suggest that effects of predation by recovering wolves on neonatal elk survival, a contentious issue for management of elk populations, may be less important than the composition of the predator community. Future studies would benefit by synthesizing overwinter calf and adult-survival data sets, ideally from experimental studies, to test the roles of predation in annual compensatory and additive mortality of elk.  相似文献   

17.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   

18.
Lennart Hansson 《Oecologia》2002,130(2):259-266
Geographically varying rodent dynamics may be due to specific landscape effects or to regional variation. Two common vole species (Clethrionomys glareolus and Microtus agrestis), their main predators and their impact on some important food items were monitored in Sweden on forest clearcuts in two different landscape types, situated in two different regions with different climatic conditions. Censuses, with 10-16 clearcuts in each landscape and both landscapes in the two regions, were designed to permit analyses of variance of the effects of landscape composition and region on dynamics and species interactions. Region had a far greater influence than landscape on vole numbers, on the proportions of generalist and specialist predators and on the winter browsing of bark of indigenous and experimental woody plants as well on seed consumption in experimental supplies. The findings indicated an influence of the depth and quality of the snow cover on the predation rates by generalist and specialist predators. However, there were also clear signs of food limitation in the snow-rich areas. Such areas had fewer generalist predators, which probably meant less directly density-dependent predation. Thus, lack of high-quality food may put a brake on population growth in climatically harsh regions, permitting increasing populations of specialist predators such as small mustelids to subsequently over-utilise their main prey and potentially cause prolonged low densities. Snow conditions may affect numbers and interactions both within habitats, landscapes and regions. Thus, to more fully understand rodent dynamics, small-scale movements and interactions of individuals in relation to the main large-scale factor(s) of various regions need to be examined.  相似文献   

19.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

20.
Terje Skogland 《Oecologia》1990,84(4):442-450
Summary The Hardangervidda wild reindeer herd in Norway is the largest in Western Europe. It has fluctuated between 7000 and 32000 animals during the last 35 years. Four density-dependent effects were found: 1. A food limitation effect due to a shift in diet after overgrazing lichen on the winter range. This led to increased tooth wear and lowered body size and fat reserves. 2. A significant correlation between population density and juvenile winter survival rate. No effect on adult female survival rate was found. 3. A cohort effect. After population increase and overgrazing, recruitment was reduced by 30% and remained so after population reduction. Birth weights had increased by 30% 5 years after population reduction and the mean calving time was earlier. As a result, after population reduction weights of newborns were 40% greater at a comparable date. Neonatal survival rate was related to maternal condition during the last part of gestation which coincides with the peak winter snow accumulation. The slow increase in adult dressed body weights (DBW) after population reduction is due to the combined effects of increased tooth wear when winter range was limiting and to the cohort-generation time, so that an improvement in neonatal survival and size was first expressed in subsequent offspring cohorts. 4. An inter-generation effect. During 30 years of resource limitation, DBW decreased by 23%, birth rate was unchanged after the first peak, while fecundity increased by 15%, suggesting increased reproductive effort per unit body weight. Natural selection for increased reproductive effort by smaller females when food was limiting was suggested. Some size-effect due to hunters selecting the largest adult phenotypes was possible but not the main cause. These results do not support some earlier hypotheses about the effects of population density on size at maturity in ungulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号