首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-mercuric-N-dansylcysteine was investigated as a potential probe of protein sulphydryl groups using bovine serum albumin, S-carboxymethyl-bovine serum albumin, lysozyme, and partially reduced lysozyme as test proteins. Criteria used to assess covalent binding through mercury-bridged mercaptide linkages include a finite reaction time (minutes to hours), abolition of the characteristic fluorescence spectrum following addition of a reducing agent, and failure to separate probe and protein after chromatography or electrophoresis. By these criteria, both Torpedo californica acetylcholinesterase and human serum cholinesterase (butyrylcholinesterase) contain four free sulphydryl groups per tetrameric enzyme molecule whereas Electrophorus electricus acetylcholinesterase has none. Labeled acetylcholinesterase and butyrylcholinesterase remain active and responsive to the inactivator Zn2+. Zn2+ promotes an increase in the fluorescence of bound S-mercuric-N-dansylcysteine, whereas activators such as Mg2+ or gallamine promote a decrease, suggesting that the label may be a useful probe of ligand-induced conformational changes. With T. californica acetylcholinesterase, but not with human serum cholinesterase, Zn2+ also promotes access to two additional groups that are reactive towards the sulphydryl reagent.  相似文献   

2.
1. Adenosine deaminase was inactivated by 9-(4-bromoacetamidobenzyl)-adenine (I) and 9-(2-bromoacetamidobenzyl)adenine (II), two affinity labels. 2. The stoichiometry of the reaction with reagent II is reported: 1 mol reagent is bound per mol inactive enzyme. Amino acid analysis of the 6 N HCl hydrolyzate of the inactive enzyme identified CM-histidine as the main alkylation product. This is the first evidence of the presence of a histidine in the active site region. 3. The alkylation rate and involved amino acid residues were studied for both reagents I and II, at pH 8 and 5.5. The particular reactivity of a lysine near or in the active site is discussed.  相似文献   

3.
The active sites of acetylcholinesterase multiple forms from four widely different zoological species (Electrophorus, Torpedo, rat and chicken) were titrated using a stable, irreversible phosphorylating inhibitor (O-ethyl-S2-diisopropylaminoethyl methyl-phosphonothionate). In all cases, we found that within a given species, the molecular forms we examined were equivalent in their catalytic activity per active site. As pure preparations of the molecular forms of Electrophorus acetylcholinesterase were available, we were able to establish that one inhibitor molecule binds per monomer unit for each of them. This had already been shown by several authors for the tetrameric globular form, but not for the tailed molecules. Analysis of the phosphorylation reaction showed that they are equally reactive. Under our experimental conditions, their turnover number per site was 4.4 x 10(7) mol of acetylthiocholine hydrolysed . h-1 at 28 degrees C, pH 7.0. The corresponding value was less than half for Torpedo (1.64 x 10(7) mol . h-1), and again lower for rat (1.32 x 10(7) mol . h-1) and chicken (1.05 x 10(7) mol . h-1). In the case of rat acetylcholinesterase, the activity per active site of solubilized (with or without Triton X-100) and membrane-bound enzyme were identical. We discuss the implications of these findings with respect to the quaternary structure of acetylcholinesterase, and to the physico-chemical state and physiological properties of its molecular forms.  相似文献   

4.
The inactivation of porcine heart thiolase I with the disulfide reagents 5,5'-dithiobis(2-nitrobenzoate) (DTNB) and 2,2- and 4,4-dithiopyridine in 0.2 M phosphate buffer, pH 7.5, follows second-order kinetics with rate constants of 2.2 X 10(2), 25 X 10(2), and 5.8 X 10(2) M-1 min-1, respectively. Stoichiometric concentrations of the thiol-oxidizing reagent diethyl azodicarboxylate inactivate thiolase in less than 1 min at pH 7.5. The presence of saturating concentrations of the substrate acetoacetyl coenzyme A or the formation of the acetyl enzyme (a normal catalytic intermediate) results in a significant protection against the inactivation of thiolase by DTNB, 2,2-dithiopyridine, and diethyl azodicarboxylate. All five sulfhydryl residues of native thiolase react with either of the dipyridyl disulfides, but only the equivalent of 3.2 residues react with DTNB even at high concentrations and prolonged incubation times. The reaction of thiolase with DTNB leads to the formation of 1.0-1.4 mol of intrachain disulfide and 0.65 mol of mixed disulfides. After inactivation of thiolase with an equimolar concentration of diethyl azodicarboxylate, 1.2 mol of intrachain disulfide per subunit is found. No cross-linking between the subunits occurs as a result of the reaction of thiolase with DTNB or diethyl azodicarboxylate. The DTNB-inactivated enzyme can be reactivated with excess dithiothreitol while the diethyl azodicarboxylate inactivated enzyme is totally resistant to reactivation by dithiothreitol. There appear to be at least two different ways of forming inactive, oxidized enzyme products depending on the oxidant used, suggesting the possibility of multiple sulfhydryl groups at or near the active site.  相似文献   

5.
Adenosine diphosphopyridoxal, the affinity labeling reagent specific for a lysyl residue in the nucleotide-binding site of several enzymes (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964; Tamura, J. K., Rakov, R. D., and Cross R. L. (1986) J. Biol. Chem. 261, 4126-4133) was applied to adenylate kinase from rabbit muscle. Incubation of the enzyme with a low concentration of the reagent at 25 degrees C for 20 min followed by reduction by sodium borohydride resulted in rapid inactivation of the enzyme. Extrapolation to 100% loss of enzyme activity gave a value of 1.0 mol of the reagent per mol of enzyme. ADP, ATP, and MgATP almost completely protected the enzyme from inactivation, whereas AMP offered little retardation of the inactivation. Dilution of the inactivated enzyme which had not been treated with the reducing reagent led to restoration of enzyme activity. This reactivation was accelerated by ATP but not by AMP. Structural study of the labeled peptide showed that Lys21 is exclusively labeled by adenosine diphosphopyridoxal. These results suggest that the epsilon-amino group of Lys21 is located in the ATP-binding site of the enzyme, more specifically at or close to the subsite for the gamma-phosphate of the nucleotide.  相似文献   

6.
When human fibroblast collagenase was incubated with ClCH2CO-(N-OH)Leu-Ala-Gly-NH2 (2-5 mM) in Tris buffer, pH 7.4 at 25 degrees C, a slow, time-dependent inhibition of the enzyme was observed. Dialysis against a buffer to remove free inhibitor did not reactivate the enzyme. A reversible competitive inhibitor, phthaloyl-GlyP-Ile-Trp-NHBzl (50 microM) partially protected the enzyme from inactivation by the compound. From the concentration dependent rates of inactivation Ki = 0.5 +/- 0.1 mM and k3, the rate constant for inactivation = 3.4 +/- 0.3 x 10(-3) min-1 were determined. The inactivation followed the pH optimum (6.5-7.0) for the enzyme activity, suggesting direct involvement of the same active site residue(s). The reaction mode of the inhibitor may be analogous to that of the inactivation of Pseudomonas aeruginosa elastase [Nishino, N. and Powers, J. (1980) J. Biol. Chem., 255, 3482] in which the catalytic glutamate carboxyl was alkylated by the inhibitor after its binding to enzyme through the hydroxamic Zn2+ ligand. All carboxyl groups in the inactivated collagenase were modified with 0.1 M ethyl dimethylaminopropyl carbodiimide/0.5 M glycinamide in 4 M guanidine at pH 5. The inactivator-affected carboxyl group was then regenerated with 1 M imidazole at pH 8.9, 37 degrees C for 12 h and the protein was radiolabeled with 3H-glycine methyl ester and carbodiimide to incorporate 0.9 residue glycine per mol enzyme.  相似文献   

7.
Treatment of purified ATPase of the thermophilic bacterium PS-3 with the arginine reagent phenylglyoxal or with Woodward's reagent K, gave complete inactivation of the enzyme. The inactivation rates followed apparent first-order kinetics. The apparent order of reaction with respect to inhibitor concentrations gave values near to 1 with both reagents, suggesting that inactivation was a consequence of modifying one arginine or carboxyl group per active site. ADP and ATP strongly protected the thermophilic ATPase against both reagents. GDP and IDP protected less, whilst CTP did not protect. Experiments in which the incorporation of [14C]phenylglyoxal into the enzyme was measured show that extrapolation of incorporation to 100% inactivation of the enzyme gives 8-9 mol [14C]phenylglyoxal per mol ATPase, whilst ADP or ATP prevent modification of about one arginine per mol.  相似文献   

8.
Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.  相似文献   

9.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

10.
Effect of temperature on the rate of the bond-breaking step of acetylcholinesterase modification with N,N-dimethylaziridinium ion was studied within 8 to 45 degrees C temperature interval. For this reaction measured by irreversible inhibition of the acetylcholinesterase-catalyzed hydrolysis of acetylthiocholine the activation parameters delta H not equal to = 94 kJ/mole and delta S not equal to (25 degrees C) = -9.4 J/mol X deg were obtained. Processing of these data together with our earlier results on spontaneous solvolysis of the aziridinium ion in various water-solvent mixtures showed that all these reactions form a common isokinetic series. That gave evidence of the SN1 mechanism of the alkylation reaction occurring at the acetylcholinesterase active centre. Kinetics of spontaneous decomposition of the covalent bond between the aziridinium reagent and protein molecule was studied. This reaction followed the first-order kinetics and lead to complete liberation of the label from the enzyme, thus suggesting that a single carboxylic or amide group in the active centre was modified by the aziridinium ion.  相似文献   

11.
When the F1-ATPase from the thermophilic bacterium, PS3, was inactivated by 90% with 7-chloro-4-nitro[14C]benzofurazan ([14C]Nbf-Cl) at pH 7.3 and then gel-filtered, 1.25 mols of [14C]Nbf-O-Tyr and less than 0.1 mol of Nbf-N-Lys were formed per mol of enzyme. After adjusting the pH of the gel-filtered, modified enzyme to 9.0 and incubating it for 14 hrs. at 23 degrees C to promote O----N migration, 0.68 mol of Nbf-N-Lys were formed per mol of enzyme while about 16% of the original activity reappeared. Isolation of the subunits after the O----N migration showed that 90% of the incorporated 14C was present in the beta subunit, which contained 0.21 mols of [14C]Nbf-N-Lys per mol. A tryptic peptide which contained the majority of the 14C incorporated into the beta subunit was isolated and subjected to automatic amino acid sequence analysis contained 38 residues. The amino acid sequence immediately around the lysine residue labeled with [14C]Nbf-, K*, was found to be: ...I-G-L-F-G-G-A-G-V-G-K*-T-V-L-I-G... .  相似文献   

12.
Pyridoxal 5'-phosphate (pyridoxal-5'-P) has been found to act as a bifunctional reagent during the inactivation of porcine heart cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37). The biphasic kinetics and X-azolidine-like structure formed were similar to those observed for mitochondrial malate dehydrogenase (Wimmer, M.J., Mo, T., Sawyers, D.L., and Harrison, J.H. (1975) J. Biol. Chem. 250, 710-715). In the cytoplasmic enzyme, however, irreversible inactivation representing X-azolidine formation was found to be the dominant characteristic of the interaction with pyridoxal-5'-P. Spectral evidence indicated that at total inactivation 2 mol of pyridoxal-5'-P were incorporated per mol of enzyme or one pyridoxal-5'-P per enzymatic active site. The presence of NADH protected the enzyme from inactivation suggesting interaction of pyridoxal-5'-P at or near the enzymatic active centers of this enzyme. Fluorometric titrations indicated that pyridoxal-5'-P-inactivated enzyme failed to bind NADH or at least failed to bind NADH in the same fashion as native enzyme.  相似文献   

13.
Chicken gizzard myosin treated with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) resulted in a 65% inhibition of the K(+)-ATPase (myosin ATP phosphohydrolase (actin translocating), EC 3.6.1.32) activity and 3.5 mol of the reagent was bound per 4.7 x 10(5) g protein. The labeling was limited to the heavy chain region and none of the light chains were lost. MgATP had no effect on the inactivation or labeling pattern. Thiolysis of NBD-myosin with dithiothreitol restored the K(+)-ATPase activity and concurrently, 1 mol of the NBD group was removed from the heavy chain region. Cysteine residues were modified in NBD-myosin at sites other than the active site when the enzyme activity was inhibited. There was a difference in the extent of NBD-Cl modification of gizzard myosin at 0.6 M KCl (6 S elongated state) when compared to that at 0.15 M KCl (10 S folded state). This was also seen in the heavy meromyosin-like chymotryptic fragments and tryptic fragments of NBD-myosin. The reagent NBD-Cl can detect changes in the conformation of gizzard myosin by way of its reaction with thiol groups of the heavy chain region.  相似文献   

14.
S Ohnoki  B S Hong  J M Buchanan 《Biochemistry》1977,16(6):1065-1069
A two-step method for labeling the glutamine active site of formyglycinamide ribonucleotide (FGAR) amidotransferase from chicken liver has been developed in which reaction of all other reactive groups with unlabeled iodoacetate is followed by specific labeling of the glutamine site with radioactive reagent. A study of the reaction as a function of duration, temperature, and pH of the incubation as well as concentration of iodoacetate has revealed that two nonessential groups of the enzyme react in the presence of glutamine and that this modified enzyme is relatively resistant to further carboxymethylation. When this modified enzyme was incubated with radioactive iodoacetate in the presence of FGAR, ATP, and Mg2+ after removal of glutamine by dialysis, about 1 mol of radioactive iodoacetate was incorporated per mol of enzyme with inactivation. This method permits labeling of the active site for glutamine without the use of glutamine analogues.  相似文献   

15.
Direct microcalorimetric measurements were made of the reaction between acetylcholine chloride and acetylcholinesterase (EC 3.1.1.7) that was extracted from electric eel (Electrophorus electricus) and purified by affinity chromatography. Tris-HCl, sodium phosphate and potassium phosphate were used as buffers and sources of ions for the reaction. At pH 7.2 and in 0.1-0.2 M phosphate buffer, the delta H for acetylcholine hydrolysis was found to be -0.107 kcal/mol (under buffered conditions) and -0.931 kcal/mol under unbuffered conditions (water). At pH 8.0 in 0.1 M Tris-HCl buffer, values greater than -2.5 kcal/mol were obtained, with the highest value of -9.2 kcal/mol being seen with bovine erythrocyte acetylcholinesterase. Tris-HCl buffer at 4 X 10(-2) M enhanced the reaction velocity by 51.2% over that of 4 X 10(-3) M buffer. Enzyme purity, pH and ionic milieu of reaction mixture, and substrate concentration affected the measured delta H value.  相似文献   

16.
The synthesis of a series of SS'-polymethylenebis(methanethiosulphonates) including the pentane, hexane, octane, decane and dodecane derivatives is described. These derivatives were synthesized by condensation between dibromoalkanes and potassium methanethiosulphonate in refluxing methanol and this seems an especially versatile reaction for the synthesis of asymmetric thiosulphonate derivatives. The synthesis of SS'-[1,8-3H4]-octamethylenebis(methanethiosulphonate) was also perfomed. Cross-linking was demonstrated in the four enzymes lactate dehydrogenase, phosphofructokinase, pyruvate kinase and glyceraldehyde 3-phosphate dehydrogenase. For all four enzymes cross-linking was efficiently reversed by reducing conditions in denaturing solvents. The reaction with glyceraldehyde 3-phosphate dehydrogenase was unique in that only the cross-linked dimer was produced in significant amounts (greater than 90% of total products as dimer). This reaction was followed in detail with radioactive cross-linking reagent. Inhibition of enzyme activity was extremely fast and showed an asymmetric distribution of enzyme activity on subunits. Thus complete modification of only one subunit resulted in up to 75% inhibition of enzyme activity. Reaction of glyceraldehyde 3-phosphate dehydrogenase with 1.25 mol of SS'-octamethylenebis(methanethiosulphonate) per mol of enzyme subunit produced two species of protein. The first species was obtained in 20% yield and was only partially re-activated on mild reduction with 2-mercaptoethanol. The second species was isolated in 66% yield and was completely re-activated on mild reduction. Before reduction there was 4 mol of inhibitor per tetramer for the latter species, and more than 95% of the enzyme was present as a dimer on non-reducing electrophoresis. After mild reduction 2 mol of inhibitor was still bound per tetramer, the enzyme was now catalytically active and the dimer was still the major structure on non-reducing electrophoresis. Thus mild reduction of SS'-octamethylenebis(methanethiosulphonate-treated glyceraldehyde 3-phosphate dehydrogenase enabled the production of active enzyme in which there is a stable cross-link across one of the molecular axes of the tetrameric enzyme. This cross-link was only reversed if reduction was performed when the enzyme was denatured. The molecular weight of cross-linked and re-activated cross-linked glyceraldehyde 3-phosphate dehydrogenase was established as 144000 (tetramer) by sucrose-density-gradient centrifugation. These observations are interpreted in terms of the molecular structure of glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

17.
Pig heart NADP-dependent isocitrate dehydrogenase is 65% inactivated by 3-bromo-2-ketoglutarate (Ehrlich, R.S., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,614-12,619) and 90% inactivated by 2-(4-bromo-2,3-dioxobutylthio)-1,N6- ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) (Bailey, J.M., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,620-12,626). Both inactivation reactions result in enzyme with an incorporation of 1.0 mol reagent/mol enzyme dimer and both modified enzymes bind only 1.0 mol manganous isocitrate or NADPH/mol enzyme dimer as compared to 2.0 mol manganous isocitrate or NADPH/mol enzyme dimer for unmodified enzyme. The inactivation reactions, which occur at or near the nucleotide binding site, are mutually exclusive. Reaction with either affinity reagent led to the isolation of the same modified triskaidekapeptide, DLAGXIHGLSNVK. We have isolated from isocitrate dehydrogenase a peptide, DLAGCIHGLSNVK, that had been modified by N-ethylmaleimide (NEM) with no loss of enzymatic activity. We now show that enzyme modified by NEM in the presence of isocitrate plus Mn2+ retains full catalytic activity but is not inactivated by either of the affinity reagents; thus, all three reagents appear to react at the same site. The analysis of HPLC tryptic maps of isocitrate dehydrogenase treated under denaturing conditions with iodo[3H]acetic acid or [3H]NEM demonstrates that both bromoketoglutarate and 2-BDB-T epsilon A-2',5'-DP react with the cysteine residue of DLAGCIHGLSNVK. We conclude that the cysteine of this triskaidekapeptide is close to the coenzyme binding site but is not essential for catalytic function.  相似文献   

18.
A new reactive adenine nucleotide has been synthesized: 2-[(4-bromo-2,3-dioxobutyl)thio]-adenosine 5'-monophosphate (2-BDB-TAMP). Adenosine 5'-monophosphate 1-oxide was synthesized by reaction of AMP with m-chloroperoxybenzoic acid. Treatment with NaOH followed by reaction with carbon disulfide yielded 2-thioadenosine 5'-monophosphate (TAMP). The final product was generated by reaction of TAMP with 1,4-dibromobutanedione. The structure of 2-BDB-TAMP was determined by UV, 1H NMR, and 13C NMR spectroscopy as well as by bromide and phosphorus analysis. Rabbit muscle pyruvate kinase is inactivated by 2-BDB-TAMP at pH 7.0 and 25 degrees C. The inactivation rate exhibits a nonlinear dependence on the reagent concentration with KI = 0.57 mM. Protection against inactivation is provided by ADP and ATP, in the presence of Mn2+, as well as by phosphoenolpyruvate, in the presence of K+; in addition, partial protection is provided by AMP plus Mn2+. Incubation of pyruvate kinase with 0.075 mM 2-BDB-TAMP for 70 min in the absence of protective ligands leads to incorporation of 1.55 mol of reagent/mol of enzyme subunit when the enzyme is 53% inactive. In the presence of ADP and Mn2+, only 0.96 mol of reagent/mol of subunit is incorporated at 70 min, while the enzyme retains 100% activity. Similar results were obtained in the presence of ATP plus Mn2+. Assuming that the groups modified in the absence of ligands include those modified in the presence of the nucleotides, the 53% inactivation can be attributed to the modification of 0.59 (1.55-0.96) group per enzyme subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The bifunctional reagent 1,4-dibromobutanedione (DBBD) reacts covalently with pyruvate kinase from rabbit muscle to cause inactivation of the enzyme at a rate that is linearly dependent on the reagent concentration, giving a second order rate constant of 444 min-1 M-1. The individual substrates phosphoenolpyruvate (with KCl), ADP, or ATP in the presence of divalent metal cation provide marked protection against inactivation suggesting that reaction occurs in the region of the active site. The limited incorporation of DBBD into pyruvate kinase was measured by reduction of the carbonyl groups of the enzyme-bound reagent using [3H]NaBH4. When pyruvate kinase was reacted with 120 microM DBBD at pH 7.0 for 50 min in the absence of protectants, 1.8 mol of tritium/mol of subunit was incorporated, whereas in the presence of phosphoenolpyruvate with KCl, only 1.0 mol of tritium was incorporated per mole of subunit. Modified peptides were isolated from tryptic digests of pyruvate kinase. Reaction of enzyme in the presence of substrate (showing no activity loss) yielded a single peptide, Asn-Ile-X1-Lys, where X1 corresponds to Cys164 of the known amino acid sequence of muscle pyruvate kinase. In the absence of protectants, reaction for 10 min (when the enzyme retained substantial activity) yielded Asn-Ile-X1-Lys as the major labeled peptide, whereas reaction for 50 min (when the enzyme was 88% inactivated) yielded predominantly Asn-Ile-X1-Lys cross-linked to X2-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys, where X2 corresponds to Cys151. Because activity loss correlates with the appearance of the cross-linked peptides but not with formation of Asn-Ile-X1-Lys, inactivation is likely caused by the reaction leading to the cross-link between Cys151 and Cys164. The distance between the alpha-carbons of these residues in the crystal structure is 15.5 A, whereas only 12.0 A can be spanned by the two side chains linked by a dioxobutyl group, suggesting either that pyruvate kinase undergoes a conformational change in forming the cross-link or that local rapid fluctuations in structure occur in solution to the extent of 3.5 A in this region of pyruvate kinase.  相似文献   

20.
A new coloured reagent for protein modification, alpha-bromo-4-amino-3-nitroacetophenone (NH2BrNphAc), was synthesized. The reagent was found to alkylate specifically the methionine-290 residue of porcine pepsin below pH 3 at 37 degrees C, which lead to a 45% decrease of enzyme's activity towards haemoglobin. The effect of this reagent as well as that of other phenacyl bromides on the activity of pepsin appeared to be a result of steric hindrance caused by the attachment of bulky reagent residue to the edge of the cleft harbouring the enzyme active site. Only marginal reaction with the co-carboxy group of aspartic acid-315 was found under the above conditions. More pronounced esterification of carboxy groups (up to one residue per enzyme molecule) occurred when the pH was shifted to 5.2. The latter modification had no noticeable effect on enzyme activity, thus disproving a previously held assumption that pepsin inactivation by phenacyl bromide is due to the carboxy-group esterification. alpha-Bromo-4-amino-3-nitroacetophenone forms derivatives with characteristic u.v. spectra when it reacts with methionine, histidine, aspartic and glutamic acid residues, and may be recommended as a reagent for protein modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号