首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The S-thiolated proteins phosphorylase b (Phb) and carbonic anhydrase III (CAIII) were prepared with [3H]glutathione in a reaction initiated with diamide. These substrates were used to measure the rate of reduction (dethiolation) of protein mixed-disulfides by enzymes with properties similar to those of thioredoxin and glutaredoxin. This enzyme activity is termed a dethiolase since the identities of the enzymes are still unknown. The dethiolation of either S-[3H]glutathiolated Phb or S-[3H]glutathiolated CAIII was employed in tissue assays and for study of two partially purified dethiolases from cardiac tissue. NADPH-dependent dethiolase activity was most abundant except in rat liver and muscle. Total dethiolase activity was approximately 10-fold higher in neutrophils, 3T3-L1 cells, and Escherichia coli than in other sources. Rat skeletal muscle had 3- to 4-fold higher dethiolase activity than rat heart or liver. These data indicate that protein dethiolase activity is ubiquitous and that normal expression of the two dethiolase activities varies considerably. A partially purified cardiac NADPH-dependent dethiolase acted on Phb approximately 1.5 times faster than CAIII, and a glutathione (GSH)-dependent dethiolase acted on Phb 3 times faster than CAIII. The Km for glutathione for the GSH-dependent dethiolase was 15 microM with Phb as substrate and 10 microM with CAIII. Thus, the GSH-dependent dethiolase is probably not affected by normal changes in the cardiac glutathione content (normally approximately 3 mM). Partially purified cardiac NADPH-dependent dethiolase was inactivated by BCNU (N,N'-bis(2-chloroethyl)-N-nitrosourea) and the GSH-dependent dethiolase was unaffected under similar conditions. In a soluble extract from bovine heart, 200 microM BCNU inhibited NADPH-dependent dethiolase by more than 60% but did not affect GSH-dependent activity. These results demonstrate that BCNU is a selective inhibitor of the NADPH-dependent dethiolase.  相似文献   

2.
An S-thiolated 30-kDa protein has been purified from rat liver by two steps of ion-exchange chromatography. This monomeric protein has two "reactive" sulfhydryls that can be S-thiolated by glutathione (form a mixed disulfide with glutathione) in intact liver. The protein has been identified as carbonic anhydrase III by sequence analysis of tryptic peptides from the pure protein. The two "reactive" sulfhydryls on this protein can produce three different S-thiolated forms of the protein that can be separated by isoelectric focusing. Using this technique it was possible to study the S-thiolation and dethiolation reactions of the pure protein. The reduced form of this protein was S-thiolated both by thiol-disulfide exchange with glutathione disulfide and by oxyradical-initiated S-thiolation with reduced glutathione. The S-thiolation rate of this 30-kDa protein was somewhat slower than that of glycogen phosphorylase b by both S-thiolation mechanisms. The S-thiolated form of this protein was poorly dethiolated (i.e., reduced) by glutathione, cysteine, cysteamine, or coenzyme A alone. Enzymatic catalysis by two different enzymes (glutaredoxin and thioredoxin-like) greatly enhanced the dethiolation rate. These experiments suggest that carbonic anhydrase III is a major participant in the liver response to oxidative stress, and that the protein may be S-thiolated by two different non-enzymatic mechanisms and dethiolated by enzymatic reactions in intact cells. Thus, the S-thiolation/dethiolation of carbonic anhydrase III resembles glycogen phosphorylase and not creatine kinase.  相似文献   

3.
Two methods for quantitation of protein S-thiolation, by isoelectric focusing or by enzyme activity, were used for studying S-thiolation of cytoplasmic cardiac creatine kinase. With these methods, creatine kinase was identified as a major S-thiolated protein in both bovine and rat heart. In rat heart cell cultures, creatine kinase became 10% S-thiolated during a 10 min incubation with 0.2 mM diamide. This enzyme became S-thiolated more slowly than other heart cell proteins and it also dethiolated more slowly. Two sequential additions of diamide at a 25 min interval caused twice as much S-thiolation after the second addition as compared to the first. This increased sensitivity to the second diamide treatment may have resulted from glutathione loss during the first addition which produced a higher GSSG-to-GSH ratio after the second treatment. The GSSG-to-GSH ratio was highest prior to the maximum S-thiolation of creatine kinase, but, in general, the time course of glutathione was similar to the S-thiolation of creatine kinase. This study demonstrates that cytoplasmic creatine kinase is S-thiolated and, therefore, inhibited during a diamide-induced oxidative stress in heart cells. Implications for regulation of cardiac metabolism during oxidative stress are discussed.  相似文献   

4.
S-thiolation of cardiac creatine kinase and skeletal muscle glycogen phosphorylase b was initiated by reduced oxygen species in reaction mixtures containing reduced glutathione. Both proteins were extensively modified at similar rates under conditions in which the oxidation of glutathione was inadequate to cause S-thiolation by thiol-disulfide exchange. Creatine kinase was both S-thiolated and non-reducibly oxidized at the same time at low glutathione concentration. The amount of each modification was decreased by adding additional reduced glutathione, and with adequate glutathione oxidation was prevented while S-thiolation was still very active. S-thiolation of glycogen phosphorylase b was not significantly affected by glutathione concentration and non-reducible oxidation of glycogen phosphorylase b was not observed. These experiments suggest that oxyradical or H2O2-initiated processes may be an important mechanism of protein S-thiolation during oxidative stress, and that the cellular concentration of glutathione may be an important factor in S-thiolation of different proteins. Both creatine kinase and glycogen phosphorylase b competed favorably with ferricytochrome c for superoxide anion in the standard xanthine oxidase system for the generation of oxyradicals and H2O2. These proteins were as effective as ascorbate and much more effective than reduced glutathione in this regard. Ascorbate was also an effective inhibitor of oxyradical-initiated S-thiolation of creatine kinase, suggesting a role of superoxide anion in protein S-thiolation. Other experiments showed that both catalase and superoxide dismutase could partially inhibit protein S-thiolation. Thus, reduced oxygen species may react with protein sulfhydryls resulting in S-thiolation by a mechanism that involves the reaction of an activated protein thiol with reduced glutathione.  相似文献   

5.
Phosphorylase kinase was purified (110-fold) from bovine stomach smooth muscle by a procedure involving DEAE-cellulose chromatography, ammonium sulfate fractionation and glycerol density ultracentrifugation. On sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) the final enzyme preparation shows a single protein band of 43 kDa. The purified protein exhibits a close similarity with bovine aortic actin, as revealed by amino acid analysis and sequencing of a tryptic decapeptide fragment, although it differs widely from actin in several respects. In our effort to separate phosphorylase kinase activity from the 43 kDa protein we used a variety of chromatographic procedures, but in all cases the catalytic activity (when eluted) was accompanied by the 43 kDa protein band. Bovine stomach phosphorylase kinase exhibits an apparent molecular mass of 950 kDa, it shows a low Vmax value for phosphorylase b (85 nmol.min-1.mg-1), a pH 6.8/8.2 activity ratio of 0.23, it has an absolute requirement for Ca2+ and it is activated 1.8-fold by Ca2+/calmodulin. Furthermore, the protein kinase activity is neither inhibited by antibodies against rabbit skeletal muscle phosphorylase kinase nor activated by protein phosphorylation. These results suggest that bovine stomach phosphorylase kinase is tightly bound to an aggregate of actin-like molecules.  相似文献   

6.
The activities of phosphorylase b kinase and phosphorylase a phosphatase were determined during the phases of KCl-induced contraction in porcine carotid artery. Phosphorylase b kinase exhibited a biphasic pattern with activity increasing 70% above basal levels during the early phase of active force generation (45 s into contraction) followed by a decline in activity during the phase of steady-state tension maintenance. Phosphorylase a phosphatase was stimulated simultaneously with phosphorylase b kinase, with activity increasing 100% over basal levels at 45 s into contraction, but remaining elevated at 30 min. Incubation of arteries in 0.5 mM palmitate resulted in a 30% increase in basal activity of phosphorylase b kinase and 117% augmentation of basal phosphatase activity, with no further increase in activity of either enzyme with contraction. The results indicate that both the kinase and phosphatase are subject to regulation during contractile activation of the muscle, possibly by similar but not identical mechanisms.  相似文献   

7.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

8.
Phosphorylase b and two peptides with sequences homologous to phosphorylation site 2 (syntide 2) and site 3 (syntide 3) of glycogen synthase were compared as substrates for purified muscle phosphorylase kinase. The substrate specificity of phosphorylase kinase varied according to whether heparin (at pH 6.5) or Ca2+ (at pH 8.2) was used as a stimulator of its activity. Phosphorylase b was preferentially phosphorylated in the presence of Ca2+; the rate of syntide 2 phosphorylation was the same for both stimulators; and the phosphorylation of syntide 3 was completely dependent on the presence of heparin. A kinetic analysis confirmed this stimulator-dependent substrate specificity since both the Vmax and Km for these substrates were affected diversely by heparin and Ca2+. Heparin stimulated phosphorylase kinase maximally at pH 6.5, whereas the effect of Ca2+ was optimal at a pH above 8. However, the stimulator-related substrate specificity could not be explained by the different pH values at which the effects of the stimulators were assessed. Nor did substrate-directed effects by heparin or Ca2+ apparently play a role. No indications were found for a stimulator-dependent specificity in the phosphorylation of sites in protein substrates of phosphorylase kinase (phosphorylase b, the alpha- and beta-subunits of phosphorylase kinase, or glycogen synthase). The diverse substrate specificity of the calcium- and heparin-dependent activities of phosphorylase kinase could be explained in two ways: either by the existence of separate calcium- and heparin-stimulated catalytic sites, or by just one catalytic site with two active conformations. The second possibility is favored by the observation that both calcium and heparin stimulated the isolated gamma-subunit (gamma X calmodulin complex) of phosphorylase kinase.  相似文献   

9.
A method for assaying glutathione reductase (GSH; EC 1.6.4.2) in crude plant extracts is described. The method is based on the increase in absorbance at 412 nm when 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) is reduced by GSH. The effects of the following parameters on the assay were tested: various buffers, pH, buffer concentration, compounds commonly present in enzyme preparations, thiols, and the presence of another NADPH-dependent enzyme. The assay is more sensitive and less subject to interference than the widely used assay where NADPH oxidation is monitored. In particular, the specificity of DTNB allows assay of glutathione reductase in the presence of other NADPH-dependent enzymes and common protein extract contaminants.  相似文献   

10.
Macrophage cell cultures were treated with menadione, zymosan, or phorbol myristate acetate (PMA), and changes in productions of superoxide anion and hydroperoxide, and in glutathione oxidation and S-thiolation of cystatin-beta (formation of a mixed disulfide of cystatin-beta and glutathione) were examined. All three compounds promoted production of superoxide anion and hydroperoxide, but only menadione caused extensive oxidation of glutathione. Menadione caused S-thiolation of cystatin-beta in a dose-dependent fashion, but the other two compounds did not. Removal of menadione promptly reduced the oxidation of glutathione and S-thiolation of cystatin-beta induced by menadione. Inhibition of catalase by aminotriazol caused slight increase in the GSSG content in both menadione- and zymosan-treated cells, but not in S-thiolation of cystatin-beta in zymosan-treated cells. None of the three compounds influenced appreciably the activity of glutathione peroxidase, glutathione reductase, or superoxide dismutase in cultured cells. These results indicate that S-thiolation of cystatin-beta occurs in cells in response to oxidative challenge by menadione but not by zymosan or by the tumor promoter PMA. Dethiolation of cystatin-beta by purified thiol transferase and protein disulfide isomerase in the presence of different concentrations of GSH was examined in vitro. Both enzymes catalyzed dethiolation of cystatin-beta at a much lower level of GSH than that required for the non-enzymatic reaction, suggesting the importance of enzymatic catalysis of S-thiolation and dethiolation of cystatin-beta in cells.  相似文献   

11.
Ascorbate-Fe3+-induced and NADPH-induced lipid peroxidation of rat liver microsomes were inhibited by glutathione (GSH). This inhibition was due to microsomal GSH-dependent factor. This factor was heat labile, and storage of microsomes at 4 degrees C for 1 week diminished the activity. GSH could not be substituted by other sulfhydryl compounds tested. Deoxycholate (1 mM) and bromosulfophthalein (0.1 mM) inhibited GSH-dependent protection but did not inhibit microsomal GSH peroxidase activity. Iodoacetate (10 mM) inhibited GSH-dependent protection but did not inhibit microsomal GSH S-transferase. N-Ethylmaleimide (0.1 mM) and oxidized glutathione (10 mM) inhibited GSH-dependent protection but activated microsomal GSH S-transferase activity. These results indicate the existence of a heat-labile, microsomal GSH-dependent protective factor against lipid peroxidation that acts through a factor other than GSH-peroxidase and GSH S-transferase.  相似文献   

12.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

13.
F J Gella  F Palomo  J Beleta 《Enzyme》1988,39(3):167-173
Several well-established procedures for the isolation of enzymes involved in glycogen metabolism have been modified such that all the enzymes can now be isolated from the same muscle preparation. The purified proteins are the catalytic subunit of cyclic AMP-dependent protein kinase, its thermostable inhibitor, glycogen phosphorylases a and b, and phosphorylase kinase. Phosphorylase kinase is separated by acid precipitation of the muscle extract. The other proteins are purified from the acid supernatant by chromatography on DEAE-cellulose. Further purification of each protein to homogeneity is then achieved using previously described methods. The proposed protocol saves sample tissue, and considerably reduces the work involved in obtaining muscle samples.  相似文献   

14.
R D Edstrom  M H Meinke  X Yang  R Yang  D F Evans 《Biochemistry》1989,28(12):4939-4942
The molecular structures of phosphorylase b and phosphorylase kinase have been visualized by scanning tunneling microscopy (STM). STM is a near field technique that can resolve structures at the nanometer level and thus can image individual molecules. Phosphorylase b can be seen in dimeric and tetrameric forms as well as linear and globular aggregates. The linear arrays consist of side by side dimers with the long axis of the dimer perpendicular to the aggregated chain. Individual molecules of phosphorylase kinase appear to be planar, bilobate structures with a 2-fold axis of symmetry and a central depression.  相似文献   

15.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

16.
1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate.  相似文献   

17.
Endothelial cells encounter oxidant stress due to their location in the vascular wall, and because they generate reactive nitrogen species. Because ascorbic acid is likely involved in the antioxidant defenses of these cells, we studied the mechanisms by which cultures of EA.hy926 endothelial cells recycle the vitamin from its oxidized forms. Cell lysates reduced the ascorbate free radical (AFR) by both NADH- and NADPH-dependent mechanisms. Most NADH-dependent AFR reduction occurred in the particulate fraction of the cells. NADPH-dependent reduction resembled that due to NADH in having a high affinity for the AFR, but was mediated largely by thioredoxin reductase. Reduction of dehydroascorbic acid (DHA) required GSH and was both direct and enzyme dependent. The latter was saturable, half-maximal at 100 microM DHA, and comparable to rates of AFR reduction. Loading cells to ascorbate concentrations of 0.3-1.6 mM generated intracellular DHA concentrations of 20-30 microM, indicative of oxidant stress in culture. Whereas high-affinity AFR reduction is the initial and likely the preferred mechanism of ascorbate recycling, any DHA that accumulates during oxidant stress will be reduced by GSH-dependent mechanisms.  相似文献   

18.
Phosphorylase kinase from human polymorphonuclear leukocytes was investigated in a gel filtered crude preparation (17,000 x g supernatant). It was found to exist in two forms, one (the phosphorylated form) more active than the other (the dephosphorylated form). Interconversion between the two forms was carried out by a cyclic AMP dependent protein kinase and phosphoprotein phosphatase, respectively. The ratio of activity measured at pH 8.0 and 6.0 was 0.36 for the non-activated and 0.83 for the activated form, which is in contrast to the behaviour of phosphorylase kinase from muscle. Km app for the substrate phosphorylase b was 650 U/ml and 85 U/ml for the non-activated and activated form, respectively, whereas Km app for ATP was 0.03 mM and identical for the two forms. The non-activated form of phosphorylase kinase was activated by Ca2+ in the range 10(-7)--5 . 10(-6) M, which may have physiological importance, whereas the activated form was insensitive to variations in Ca2+ concentration between 10(-9) and 10(-3) M.  相似文献   

19.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

20.
Yeast phosphorylase is phosphorylated and activated by a cyclic AMP-independent protein kinase (called phosphorylase kinase) and a cyclic AMP-dependent protein kinase. Only in the presence of both kinases is phosphorylase fully activated and phosphorylated. No evidence was found for the presence of two phosphorylation sites as an identical phosphopeptide pattern of phosphorylase is obtained after phosphorylation by either one or both kinases. The kinases probably phosphorylate identical sites but recognize different subunits of phosphorylase. Phosphorylase kinase phosphorylates the high-Mr subunit while cAMP-dependent protein kinase phosphorylates the low-Mr subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号