首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
The presence of neutral soluble alpha-D-mannosidase activity was shown in human granulocytes. For detection of the enzyme different methods were used: addition of stabilizing agents; sorption of acid alpha-D-mannosidase on concanavalin A-sepharose; inhibition of acid alpha-D-mannosidase; determination of neutral alpha-D-mannosidase in granulocytes of patients with inherited defect of acid alpha-D-mannosidase (mannosidosis). The specific activity of neutral alpha-D-mannosidase in granulocytes of donors calculated in nmol/min/mg of protein was near to the activity in lymphocytes. However the activity in granulocytes calculated in nmol/min/10(8) of cells was approximately 3 times lower than that in lymphocytes. The activity of neutral alpha-D-mannosidase in immature myeloid cells of a patient with chronic myeloid leukaemia was 10 times higher than in natural granulocytes of the same patient. This high activity may be in connection with the process of cell differentiation or the result of malignant transformation.  相似文献   

2.
S D Bolmer  J Kleinerman 《Enzyme》1985,34(3):144-151
Previous studies have shown that chronic administration of D-galactosamine (GalNH2) in rats produces alpha 1-antiprotease (AAP) deficiency and causes accumulation of aberrantly glycosylated AAP in hepatic granules. In order to examine the disordered mechanism which produces this altered glycosylation, the activities of 6 glycosidases in liver homogenates of control and AAP-deficient rats were determined. GalNH2 treatment increases acid pH glycosidase activity, while it decreases intermediate pH alpha-mannosidase and alpha-glucosidase activities. beta-D-Glucosidase, beta-D-mannosidase and beta-D-N-acetylglucosaminidase activities, measured at acid pH, increase more than 2-fold in the GalNH2-treated rats compared to controls. alpha-D-Glucosidase activity measured at intermediate pH decreases 2.5-fold in the experimental rats. alpha-L-Fucosidase and acid phosphatase activities are not significantly changed by GalNH2 treatment. alpha-D-Mannosidase activity can be separated into 2 fractions by ion exchange chromatography. Acid pH alpha-D-mannosidase is increased nearly 2-fold in the GalNH2-treated rats. Intermediate pH alpha-D-mannosidase optimum is decreased alpha-D-mannosidase activities have been observed in humans with AAP deficiency. alpha-Glucosidases and alpha-mannosidases play a crucial role in glycoprotein synthesis. The altered synthesis and structure of AAP in GalNH2-induced AAP deficiency may be a reflection of altered enzyme activities.  相似文献   

3.
The activity of a lysosomal enzyme, alpha-D-mannosidase (EC 3.2.1.24), increased markedly in normal lymphocytes when they were cultured together with fibroblasts from a patient with an inherited deficiency of this enzyme. Cell-to-cell contact was obligatory for this increase in activity, which also required new protein synthesis. The enzyme induced in the co-cultured lymphocytes was a high molecular weight form of alpha-D-mannosidase that was not detected in lymphocytes cultured alone, which had only the low molecular weight mature enzyme. It was this precursor form alone that was directly transferred to the mannosidosis fibroblasts, where it was present initially in organelles of low density. When the culture period was extended the lymphocyte precursor enzyme was transported to the heavy lysosomes in the recipient cells, and correctly processed to the functionally effective mature enzyme.  相似文献   

4.
Previous studies from this laboratory and others have identified several enzymes on the surface of mammalian spermatozoa. Some of these enzymes, namely a galactosyltransferase and a novel alpha-D-mannosidase, are believed to play a ligand-like role in recognizing and binding to the complementary moiety(ies) present on zona pellucida glycoconjugates. However, little or no information is available about the occurrence of these enzymes in human spermatozoa. In the present report, we show that a very small amount of the total galactosyltransferase activity present in human semen is associated with spermatozoa. Moreover, our failure to find a significant amount of the enzyme on sperm plasma membranes suggests that the enzyme is not associated with the sperm surface. Therefore, it is unlikely that galactosyltransferase in humans has the same ligand-like role in zona binding that is demonstrated in mouse sperm. In contrast, nearly 5% of alpha-D-mannosidase activity was repeatedly found in the salt-washed plasma membrane fraction. The recovery and enrichment of the alpha-D-mannosidase was nearly one-half that observed for adenylate cyclase and nearly one-third that for phosphodiesterase I, the two sperm plasma membrane marker enzymes. The differential enrichment and recovery of the sperm surface alpha-D-mannosidase is consistant with our previous studies in rat spermatozoa, and suggests that alpha-D-mannosidase may be localized on morphologically distinct region(s) of the sperm plasma membranes. The properties of human sperm surface alpha-D-mannosidase are quite similar to those reported by us for rat sperm plasma membrane mannosidase, but quite different from human sperm acid alpha-D-mannosidase. In addition, whereas anti-rat epididymal alpha-D-mannosidase antibody (IgG-fraction) cross-reacted with the human sperm acid alpha-D-mannosidase, no cross-reactivity was observed with the sperm surface mannosidase. A small amount of fucosyltransferase (less than 1% of the enzyme originally present on spermatozoa) was found in the salt-washed plasma membrane, but the enrichment of the enzyme was only one-tenth of that observed for adenylate cyclase. The potential ligand-like role of human sperm surface alpha-D-mannosidase and other sperm surface enzymes during fertilization is discussed.  相似文献   

5.
The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 mug/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 mug/ml), tetracycline (0.5 mug/ml), puromycin (25 mug/ml), or 5-azacytidine (5 mug/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 mug/ml) and rifampin (0.01 mug/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis.  相似文献   

6.
Synchronous cultures of HeLa cells were obtained by selective detachment of cells in mitosis and fluctuations in enzyme activity were followed during the subsequent cell cycle. The enzymes measured were alkaline and acid phosphatases and a nuclease active on denatured DNA at alkaline pH (alkaline DNase). Each of these enzymes showed a different pattern of activity in the cell cycle, but a temporal relationship to the DNA synthetic phase was apparent in each case. Treatment of the cultures at the beginning of the cell cycle with 15 mM thymidine did not alter the subsequent pattern of fluctuations in activity of alkaline phosphatase or of acid phosphatase, although DNA synthesis was fully inhibited by this treatment. This indicates that the pattern of activity of some enzymes is not linked to DNA replication. On the other hand, the pattern of fluctuations in the activity of alkaline DNase was abolished by thymidine treatment, and elevation of the activity of this enzyme was observed. These results suggest complex and variable relationships between phases of the cell cycle and enzyme activity, and show that inhibition of DNA synthesis is not a suitable procedure for induction of culture synchrony if enzyme activities are to be studied.  相似文献   

7.
The compound alpha-D-mannopyranosylmethyl-p-nitrophenyltriazene (alpha-ManMNT) has been tested for its effect on four alpha-D-mannosidase activities present in rat liver. When p-nitrophenyl alpha-D-mannopyranoside was used as a substrate, preincubation of enzyme with 1.0 mM alpha-ManMNT inhibited soluble alpha-D-mannosidase by 90%, lysosomal alpha-D-mannosidase by approx. 60%, and had virtually no effect on Golgi mannosidase II. Golgi mannosidase I removal of the four alpha-1,2-linked D-mannoses from the common Man9GlcNAc2 oligosaccharide structure formed during N-linked glycoprotein biosynthesis was also blocked by treatment of the Golgi fraction with this compound. Mannosyltriazene inhibition of the three susceptible hepatic alpha-D-mannosidases was largely irreversible. alpha-ManMNT should therefore be useful for studying oligosaccharide processing and possibly for determining the turnover time of the inhibited alpha-D-mannosidases.  相似文献   

8.
Synthesis of beta-galactosidase by Streptomyces violaceus was induced by D-galactose and L-arabinose, and to a lesser extent by lactose, D-arabinose, and methyl-beta-D-galactopyranoside. The synthesis of the enzyme was linear and started to increase 2--3 h after induction by galactose, reaching a maximum after 5--7 h. The highest level of specific activity was observed in 2% galactose, with an increase of 45 times over the basal level in glycerol. Isopropyl-beta-D-thiogalactopyranoside (IPTG) and methyl-beta-D-thiogalactopyranoside (TMG) inhibited induction by D-galactose, but did not influence enzymatic activity. Cellular extracts hydrolyzed O-nitrophenyl-beta-D-galactopyranoside, but did not significantly hydrolyze lactose, melibiose, p-nitrophenyl-alpha-D-galactopyranoside, p-nitrophenyl-beta-D-fucoside, or p-nitrophenyl-beta-D-glucopyranoside. Rifampicin and chloramphenicol inhibited beta-galactosidase synthesis in non-preinduced and in preinduced cells. The inhibition by chloramphenicol was reversible.  相似文献   

9.
Okadaic acid, a specific inhibitor of protein phosphatase 1 and 2A, inhibited the synthesis of phosphatidylethanolamine via the CDPethanolamine pathway in isolated hepatocytes. Pulse-chase experiments and measurement of the enzyme activity demonstrated that the inhibition of phosphatidylethanolamine synthesis was not caused by an inhibition of CTP:phosphoethanolamine cytidylyltransferase, the putative regulatory enzyme. However, okadaic acid decreased the cellular diacylglycerol level to 30% of that in control cells. The data suggest that the availability of diacylglycerol limits phosphatidylethanolamine synthesis in okadaic acid-treated hepatocytes.  相似文献   

10.
Two alpha-D-mannosidases have previously been identified in rat epididymis. This communication reports the purification and characterization of the "acid" alpha-D-mannosidase. The enzyme was purified over 1000-fold to near homogeneity by acetone and (NH4)2SO4 precipitation followed by ion-exchange and hydroxylapatite chromatography. The molecular weight of the enzyme was estimated to be 220,000 by gel filtration. Polyacrylamide gel electrophoresis of the native enzyme under two conditions of buffer and pH showed a single band when stained for protein while electrophoresis under denaturing conditions resulted in bands of apparent Mr 60,000 and 31,000. The enzyme is a glycoprotein containing about 5.6% hexose. In addition to mannose (3.1%) and glucosamine (2.0%), the enzyme also contained small amounts of glucose, fucose, and galactose. Chemical analysis indicated the absence of sialic acid. The substrate specificity of the purified enzyme was investigated using linear and branched mannose-containing oligosaccharides. The enzyme cleaved linear oligosaccharides [Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc and Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc] very efficiently. However, little or no activity was observed toward high mannose oligosaccharides (Man9GlcNAc through Man5GlcNAc) or the branched trimannosyl derivative Man3GlcNAc. This specificity is very similar to that observed with rat kidney lysosomal alpha-D-mannosidase. Additional evidence that the epididymal enzyme is essentially a lysosomal alpha-D-mannosidase is the fact that polyclonal antibody prepared against the purified epididymal enzyme cross-reacted with lysosomal alpha-D-mannosidase from several rat tissues and with acidic alpha-D-mannosidase of a human cell line, results suggesting that the antibody will be useful in studying the biosynthesis and turnover of lysosomal alpha-D-mannosidases in at least two species.  相似文献   

11.
Phosphatidylcholine synthesis by rat type II pneumonocytes was altered either by depleting the cells of choline or by exposing the cells to extracellular lung surfactant. Effects of these experimental treatments on the activity of a regulatory enzyme, CTP:phosphocholine cytidylyltransferase, were investigated. Although choline depletion of type II pneumonocytes resulted in inhibition of phosphatidylcholine synthesis, cytidylyltransferase activity (measured in cell homogenates in either the absence or presence of added lipids) was greatly increased. Activation of cytidylyltransferase in choline-depleted cells was rapid and specific, and was quickly and completely reversed when choline-depleted cells were exposed to choline (but not ethanolamine). Choline-dependent changes in enzymic activity were apparently not a result of direct actions of choline on cytidylyltransferase and they were largely unaffected by cyclic AMP analogues, oleic acid, linoleic acid or cycloheximide. The Km value of cytidylyltransferase for CTP (but not phosphocholine) was lower in choline-depleted cells than in choline-repleted cells. Subcellular redistribution of cytidylyltransferase also was associated with activation of the enzyme in choline-depleted cells. When measured in the presence of added lipids, 66.5 +/- 5.0% of recovered cytidylyltransferase activity was particulate in choline-depleted cells but only 34.1 +/- 4.5% was particulate in choline-repleted cells. An increase in particulate cytidylyltransferase also occurred in type II pneumonocytes that were exposed to extracellular surfactant. This latter subcellular redistribution, however, was not accompanied by a change in cytidylyltransferase activity even though incorporation of [3H]choline into phosphatidylcholine was inhibited by approx. 50%. Subcellular redistribution of cytidylyltransferase, therefore, is associated with changes in enzymic activity under some conditions, but can also occur without a resultant alteration in enzymic activity.  相似文献   

12.
The membrane-bound sialyltransferase obtained from Escherichia coli K-235 grown in a chemically defined medium (ideal for colominic acid production) was studied. The in vivo half-life calculated for this enzyme was 20 h. Kinetic tests revealed (at 33 degrees C and pH 8.3) hyperbolic behaviour with respect to CMP-Neu5Ac (Km250 microM) and a transition temperature at 31.3 degrees C. The enzyme was inhibited by NH4+, some divalent cations and by several agents that react with thiol groups. Detergents and fatty acids also inhibited the sialyltransferase activity. In vitro synthesis of colominic acid is strongly inhibited by CMP by blocking the incorporation of [14C]Neu5Ac into a protein-complex intermediate and therefore into free polymer. CDP and CTP also inhibited (91% and 84%) this enzyme activity whereas cytosine and cytidine had no effect. CMP inhibition corresponded to a competitive model the calculated Ki was 30 microM. Incubations of protein[14C]Neu5Ac with CMP, CDP and CTP led to de novo synthesis of CMP-[14C]Neu5Ac. The presence of colominic acid, which usually displaces the reaction equilibrium towards polymer synthesis, did not affect this de novo CMP-[14C]Neu5Ac formation. CMP also inhibited in vivo colominic acid biosynthesis.  相似文献   

13.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

14.
Glutamate (5mM) inhibited glucose conversion to fatty acids by approximately one-third in adipocytes from fed rats. This inhibition was significantly less in the pressence of pyruvate or 2-oxoglutarate. After incubation of adipose tissue from fed rats with glucose and insulin, pyruvate dehydrogenase activity was 180 plus or minus 17 mU/g wet weight. Addition of glutamine to the incubation medium decreased this activity significantly (118 plus or minus 14 mU/g wet weight). This inhibition by glutamate was also diminished when 2-oxoglutarate or pyruvate were present. Glutamate added to homohentates of adipose tissue had no effect on the activation of pyruvate dehydrogenase by Mg-2+. However, glutamate inhibited the active form of the enzyme and enhanced the rate of inactivation of the enzyme complex by ATP and Mg-2+. Aminooxyacetate, a transaminase inhibitor, did not reverse the effects of glutamate on pyruvate dehydrogenase nor fatty acid synthesis.  相似文献   

15.
A histochemical study of enzymatic activities was undertaken in five cases of histiocytosis X (two localized bone forms, two generalized forms, and one involving mainly the skin), each of which revealed characteristic structural features at the optical and ultrastructural levels. A confirmation was made of the original assumption of high acid alpha-D-mannosidase activity, i.e. activity described in human Langerhans intraepidermal cells (Elleder, 1975). In the control group of tumors, with the exception of urticaria pigmentosa, enzyme activity was either at trace level or altogether absent. Acid alpha-D-mannosidase activity therefore appears to be the first biochemical feature common to both histiocytosis X and the Langerhans cells. The significance of the finding for the present theory of the histogenesis of the above tumors is discussed.  相似文献   

16.
During the course of a study of glycoprotein processing mannosidases in the rat epididymis, we have made an intriguing discovery regarding the presence of a novel alpha-D-mannosidase on the rat sperm plasma membranes. Unlike the sperm acrosomal "acid" mannosidase which has a pH optimum of 4.4, the newly discovered alpha-D-mannosidase has a pH optimum of 6.2, and 6.5 when assayed in sperm plasma membranes and intact spermatozoa, respectively. In addition, the two enzymes show different substrate specificity. The acrosomal alpha-D-mannosidase is active mainly towards synthetic substrate, p-nitrophenyl alpha-D-mannopyranoside, whereas the sperm plasma membrane alpha-D-mannosidase shows activity mainly towards mannose-containing oligosaccharides. Evidence is presented which suggest that the sperm plasma membrane alpha-D-mannosidase is different from several processing mannosidases previously characterized from the rat liver. The newly discovered alpha-D-mannosidase appears to be an intrinsic plasma membrane component, since washing of the purified membranes with buffered 0.4 M NaCl did not release the enzyme in soluble form. The enzyme requires nonionic detergent (Triton X-100) for complete solubilization. The enzyme is activated by Co2+ and Mn2+. However, Cu2+ and Zn2+ are potent inhibitors of the sperm plasma membrane alpha-D-mannosidase. At a concentration of 0.1 mM, these divalent cations caused nearly complete inactivation of the sperm enzyme. In addition methyl-alpha-D-mannoside, methyl-alpha-D-glucoside, mannose, 2-deoxy-D-glucose, and D-mannosamine are inhibitors of the sperm surface alpha-D-mannosidase. The physiological role of the newly discovered enzyme is not yet known. Several published reports in three species, including the rat, suggest that the sperm surface alpha-D-mannosidase may have a role in binding to mannose-containing saccharides presumably present on the zona pellucida.  相似文献   

17.
Carbonic anhydrase activity is increased in Friend erythroleukemia (FL) cells during the enhancement of erythroid differentiation in the presence of dimethylsulfoxide (DMSO) or butyric acid. Untreated FL cells show an increase in enzyme activity associated with logarithmic growth. The increase in the specific activity of carbonic anhydrase in the differentiating treated cells, however, appears to be due to at least two additional general mechanisms: (1) an induction of carbonic anhydrase paralleling the stimulation of hemoglobin synthesis and (2) the stability and/or retention of active carbonic anhydrase as compared to most of the other cell proteins. The stimulation of carbonic anhydrase activity in the treated cells is inhibited by 5-bromo-2'-deoxyuridine (BrdU). This is the first demonstration of BrdU inhibition of a DMSO induced product not directly related to hemoglobin.  相似文献   

18.
It was found that ACTH greatly reduced lipogenesis in fat cells in the presence of calcium ion, but not in the absence of calcium ion. Of the enzymes involved in triglyceride synthesis from fatty acid in lipid micelle membranes, only acyl-CoA synthetase was inhibited by calcium ion, the apparent Ki value of calcium ion being 4.2 X 10(-4) M. The Km values of the enzyme for palmitate and ATP were 2.0 X 10(-4) M and 2.5 X 10(-4) M, respectively and calcium ion caused non-competitive inhibition with both palmitate and ATP. The acyl-CoA synthetase activity of lipid micelle membranes was inhibited by treatment with phospholipase A or C, but not by treatment with phospholipase D. The mechanism of inhibition of triglyceride synthesis by ACTH is discussed on the basis of these results.  相似文献   

19.
We have previously purified a membrane-bound ceramidase from rat brain and recently cloned the human homologue. We also observed that the same enzyme is able to catalyze the reverse reaction of ceramide synthesis. To obtain insight into the biochemistry of this enzyme, we characterized in this study this reverse activity. Using sphingosine and palmitic acid as substrates, the enzyme exhibited Michaelis-Menten kinetics; however, the enzyme did not utilize palmitoyl-CoA as substrate. Also, the activity was not inhibited in vitro and in cells by fumonisin B1, an inhibitor of the CoA-dependent ceramide synthase. The enzyme showed a narrow pH optimum in the neutral range, and there was very low activity in the alkaline range. Substrate specificity studies were performed, and the enzyme showed the highest activity with d-erythro-sphingosine (Km of 0.16 mol %, and Vmax of 0.3 micromol/min/mg), but d-erythro-dihydrosphingosine and the three unnatural stereoisomers of sphingosine were poor substrates. The specificity for the fatty acid was also studied, and the highest activity was observed for myristic acid with a Km of 1.7 mol % and a Vmax of 0.63 micromol/min/mg. Kinetic studies were performed to investigate the mechanism of the reaction, and Lineweaver-Burk plots indicated a sequential mechanism. Two competitive inhibitors of the two substrates were identified, l-erythro-sphingosine and myristaldehyde, and inhibition studies indicated that the reaction followed a random sequential mechanism. The effect of lipids were also tested. Most of these lipids showed moderate inhibition, whereas the effects of phosphatidic acid and cardiolipin were more potent with total inhibition at around 2.5-5 mol %. Paradoxically, cardiolipin stimulated ceramidase activity. These results define the biochemical characteristics of this reverse activity. The results are discussed in view of a possible regulation of this enzyme by the intracellular pH or by an interaction with cardiolipin and/or phosphatidic acid.  相似文献   

20.
Alpha-D-Mannosidase activity exists in three forms that can be separated by DEAE-cellulose chromatography, alpha-D-Mannosidase was isolated from human kidney in a homogeneous state, and was purified 2100-fold, with p-nitrophenyl alpha-D-mannoside as substrate. The purified alpha-D-mannosidase was practically free from all other glycosidases tested. The Km of the synthetic substrate with the enzyme was 1 X 10(-3) M and the pH optimum 4.5. It was inhibited by heavy metals, sodium dodecyl sulphate, urea and compounds that react with the thiol groups, and was activated by Zn2+, Na+, 2-mercaptoethanol, human albumin and gamma-globulin. The mol. wt. of the enzyme was estimated to be 180 000 +/- 4500. After pretreatment with 2-mercaptoethanol and sodium dodecyl sulphate, alpha-D-mannosidase dissociated into subunits of mol. wts. of 58 000 +/- 600 and 30 000 +/- 380 respectively. Subunits of the same molecular weights were also obtained after the enzyme was heated at 100 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号