首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microbial biosensor, using Acetobacter pasteurianus cells and an oxygen electrode, was developed for the determination of lactic acid. The bacterial cells were retained on a nylon membrane and attached to the surface of the oxygen electrode. In view of response time, stability and sensitivity, the biosensor performed best at 26°C and in pH 6 phthalate buffer containing magnesium sulfate. The activity of the retained cells was stable for approximately 170 h and was regenerable. The biosensor exhibited a hyperbolic response to both D- and L-lactic acid in the range of 10−4 M to 25 × 10−3 M. However, in the range 10−4 M to 15 × 10−4 M the response was linear. The microbial biosensor was applicable for detecting lactate concentration in yogurt and milk, since it was not sensitive to lactose, sucrose and glucose — three major components of such dairy products.  相似文献   

2.
Palythoa psammophilia Walsh & Bowers has a well coordinated, stereotyped feeding response, the culminating step of which is ingestion; this may be elicited by the synergistic effect of the tripeptide glutathione and the -imino acid, proline. Either activator acting separately causes responses only at high concentrations (above 10−5 M for glutathione; above 10−4 M for proline) in a reduced number of animals and at a low rate (5.00 ± 1.73 min in 5 × 10−3 M solutions of glutathione; 11.10±3.74 min in 5 × 10−3 M solutions of proline). Highest percentages of response were obtained in combinations where glutathione was at a concentration of 5 × 10−3 M and proline at 5 × 10−4 M or in combinations of glutathione at concentrations 5 × 10−6 M and proline at 5 × 10−5 M. The speed of ingestion is considerably enhanced when these activators are combined (1.17±1.18 min).  相似文献   

3.
An electrochemical biosensor for the determination of lysine to be used for rapid evaluation of food quality has been developed. Platinum electrodes have been coated by electropolymerisation with 1,2-diaminobenzene (1.2-DAB) using cyclic voltammetry. The reduction in the oxidation of interferents compared with the bare platinum electrode was 100% for ascorbic acid, 99% for acetaminophen and 99% for cysteine. The enzyme L-lysine--oxidase was then immobilised onto the polymer layer by passive adsorption and a calibration curve for lysine constructed. This gave a linear range of 1×10−5 mol/l to 1×10−3 mol/l and a limit of detection of 2×10−7 mol/l.  相似文献   

4.
A plant tissue biosensor associated with flow injection analysis is proposed to determine epinephrine in pharmaceutical samples. The polyphenol oxidase enzymes present in the fibers of a palm tree fruits (Livistona chinensis), catalyses the oxidation of epinephrine to epinephrinequinone as a primary product. This product is then electrochemically reduced (at −0.10 V versus Ag/AgClsat) on the biosensor surface and the resulting current is used for the quantification of epinephrine. The biosensor provides a linear response for epinephrine in the concentration range from 5.0 × 10−5 to 3.5 × 10−4 mol l−1. The limit of detection estimated for this interval was 1.5 × 10−5 mol l−1 and the correlation coefficient of 0.998, working under a flow rate of 2.0 ml min−1 and using a sample loop of 100 μl. The repeatability (R.S.D. for 10 consecutive determinations of a 3.0 × 10−4 mol l−1 epinephrine solution) was 3.1%. The results obtained by the method here proposed were compared with the official UV spectrophotometric procedure and also using a plant tissue reactor. The responses obtained with the proposed strategies were in good agreement with both ways of analyses, whereas the values obtained by the official spectrophotometric method was strongly affected by benzoic acid, present in the formulation of pharmaceutical product utilized for inhalation. Such favorable results obtained with the carbon paste biosensor or utilizing the bioreactor, joined with the simplicity of its preparation turns these procedures very attractive for epinephrine quantification in pharmaceutical products.  相似文献   

5.
A simple and effective strategy for fabrication of hydrogen peroxide (H2O2) biosensor has been developed by entrapping horseradish peroxidase (HRP) in chitosan/silica sol–gel hybrid membranes (CSHMs) doped with potassium ferricyanide (K3Fe(CN)6) and gold nanoparticles (GNPs) on platinum electrode surface. The hybrid membranes are prepared by cross-linking chitosan (CS) with 3-aminopropyltriethoxysilane (APTES), while the presence of GNPs improved the conductivity of CSHMs, and the Fe(CN)63−/4− was used as a mediator to transfer electrons between the electrode and HRP due to its excellent electrochemistry activity. UV–Vis absorption spectroscopy was employed to characterize the different components in the CSHMs and their interaction. The parameters influencing the performance of the resulting biosensor were optimized and the characteristic of the resulting biosensor was characterized by cyclic voltammetry and chronoamperometry. Linear calibration for hydrogen peroxide was obtained in the range of 3.5 × 10− 6 to 1.4 × 10− 3 M under the optimized conditions with the detection limit (S/N = 3) of 8.0 × 10− 7 M. The apparent Michaelis–Menten constant of the enzyme electrode was 0.93 mM. The enzyme electrode retained about 78% of its response sensitivity after 30 days. The system was applied for the determination of the samples, and the results obtained were satisfactory.  相似文献   

6.
The porcine pancrease lipase was immobilized by entrapment in the beads of K-carrageenan and cured by treatment with polyethyleneimine (PEI) in the phosphate buffer. The retention of hydrolytic activity of lipase and compressive strength of the beads were examined. The activity of free and immobilized lipase was assessed by using olive oil as the substrate. The immobilized enzyme exhibited a little shift towards acidic pH for its optimal activity and retained 50% of its activity after 5 cycles. When the enzyme concentration was kept constant and substrate concentration was varied the Km and Vmax were observed to be 0.18 × 10−2 and 0.10, and 0.10 × 10−2 and 0.09 respectively, for free and for entrapped enzymes. When the substrate concentration was kept constant and enzyme concentration was varied, the values of Km and Vmax were observed to be 0.19 × 10−7 and 0.41, and 0.18 × 10−7 and 0.41 for free and entrapped enzymes. Though this indicates that there is no conformational change during immobilization, it also shows that the reaction velocity depends on the concentration. Immobilized enzyme showed improved thermal and storage stability. Hydrolysis of olive oil in organic–aqueous two-phase system using fixed bed reactor was carried out and conditions were optimized. The enzyme in reactor retained 30% of its initial activity after 480 min (12 cycles).  相似文献   

7.
Li J  Lin X 《Biosensors & bioelectronics》2007,22(12):2898-2905
Novel Pt nanoclusters embedded polypyrrole nanowires (PPy-Pt) composite was electrosynthesized on a glassy carbon electrode, denoted as PPy-Pt/GCE. A glucose biosensor was further fabricated based on immobilization of glucose oxidase (GOD) in an electropolymerized non-conducting poly(o-aminophenol) (POAP) film that was deposited on the PPy-Pt/GCE. The morphologies of the PPy nanowires and PPy-Pt nanocomposite were characterized by field emission scanning electron microscope (FE-SEM). Effect of experimental conditions involving the cycle numbers for POAP deposition and Pt nanoclusters deposition, applied potential used in glucose determination, temperature and pH value of the detection solution were investigated for optimization. The biosensor exhibited an excellent current response to glucose over a wide linear range from 1.5 × 10−6 to 1.3 × 10−2 M (r = 0.9982) with a detection limit of 4.5 × 10−7 M (s/n = 3). Based on the combination of permselectivity of the POAP and the PPy films, the sensor had good anti-interference ability to ascorbic acid (AA), uric acid (UA) and acetaminophen. The apparent Michaelis–Menten constant (Km) and the maximum current density (Im) were estimated to be 23.9 mM and 378 μA/cm2, respectively. In addition, the biosensor had also good sensitivity, stability and reproducibility.  相似文献   

8.
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2′:5′,2″-terthiophene-3′-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H2O2 in a choline solution at +0.6 V. The other one modified with ChO/HRP utilized the reduction process of H2O2 in a choline solution at −0.2 V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0×10−6 to 8.0×10−5 M and the other based on ChO/CPME from 1.0×10−6 to 5.0×10−5 M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0×10−7 and 4.0×10−7 M, respectively. The response time of sensors was less than 5 s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.  相似文献   

9.
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1.  相似文献   

10.
Guar gum has been modified by graft copolymerization with acrylic acid in aqueous medium using vanadium (V)–mercaptosuccinic acid redox system. The optimum reaction conditions affording maximum grafting ratio, efficiency, add on and conversion have been determined. The grafting parameters have been found to increase with increase in vanadium (V) concentration upto 1.0 × 10−2 mol dm−3, but these parameters decrease on further increasing the vanadium (V) concentration. On increasing the mercaptosuccinic acid concentration from 1.0 × 10−2 to 4.0 × 10−2 mol dm−3 grafting ratio, efficiency and add on increase up to 2.0 × 10−2 mol dm−3 but decrease with further increase in mercaptosuccinic acid concentration. On varying the acrylic acid concentration from 5.0 × 10−2 to 30.0 × 10−2 mol dm−3, maximum grafting ratio, efficiency and add on have been obtained at 20.0 × 10−2 mol dm−3. The grafting ratio, add on and conversion increase, on increasing the H+ ion concentration from 1.5 × 10−1 to 6.0 × 10−1 mol dm−3. On increasing the guar gum concentration the grafting parameters increase. The grafting ratio, add on and conversion have been found to increase with time period while efficiency started decreasing after 120 min. It has been observed that %G increases on increasing the temperature up to 35 °C. The graft copolymer has been characterized by IR spectroscopy and thermogravimetric analysis.  相似文献   

11.
Aqueous solutions of fractions of an extracellular linear mannan formed by Rhodotorula rubra yeast have been investigated by hydrodynamic methods (high-speed sedimentation, translation isothermic diffusion and viscometry). The molecular weight was determined according to Svedberg ( ) and the polydispersity parameters of the initial sample were also determined (Mw/Mn = 1·20 and Mz/Mw = 1·21). Relationships between the molecular weight (M) and so, Do and [η] in the range were: [η] = 2·33 × 10−2 M0.75, Do = 1·65 × 10−4 M0·58, so = 2·24 × 10−15 M0·43. The equilibrium rigidity and hydrodynamic diameter of chains representing mannan molecules were evaluated.  相似文献   

12.
A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 × 10−4 mM. A biosensor based on the glucose oxidase–titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (−0.4 V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6 s and a detection limit of 2.0 × 10−3 mM. The corresponding detection sensitivity was 45.5 μA mM−1 cm−2. A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.  相似文献   

13.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

14.
The aim of our study was to determine whether a meal modifies the antisecretory response induced by PYY and the structural requirements to elicit antisecretory effects of analogue PYY(22–36) for potential antidiarrhea therapy. The variations in short-circuit current (Isc) due to the modification of ionic transport across the rat intestine were assessed in vitro, using Ussing chambers. In fasted rats, PYY induced a dose- and time-dependent reduction in Isc, with a sensitivity threshold at 5 × 10−11 M (ΔIsc −2 ± 0.5 μA/cm2). The reduction was maximal at 10−7 M (Isc −23 ± 2 μA/cm2), and the concentration producing half-maximal inhibition was 10−9 M. At 10−7 M, reduction of Isc by PYY reached 90% of response to 5 × 10−5 M bumetanide. The PYY effect was partly reversed by 10−5 M forskolin (Isc +13.43 ± 2.91 μA/h·cm2, p < 0.05) or 10−3 M dibutyryl adenosine 3′,5′ cyclic monophosphate (Isc +12 ± 1.69 μA/cm2, p < 0.05). Naloxone and tetrodotoxin did not alter the effect of PYY. In addition, PYY and its analogue P915 reduced net chloride ion secretion to 2.85 and 2.29 μEq/cm2 (p < 0.05), respectively. The antisecretory effect of PYY was accompanied by dose- and time-dependent desensitization when jejunum was prestimulated by a lower dose of peptide. The antisecretory potencies exhibited by PYY analogues required both a C-terminal fragment (22–36) and an aromatic amino acid residue (Trp or Phe) at position 27. At 10−7 M the biological activity of PYY was lower in fed than fasted rats (p < 0.001). Our results confirm the antisecretory effect of PYY, but show that the fed period is accompanied by desensitization, similar to the transient desensitization observed in the fasted period with cumulative doses. This suggests that PYY may act as a physiological mediator that reduces intestinal secretion.  相似文献   

15.
Xylanase from Aspergillus tamarii was covalently immobilized on Duolite A147 pretreated with the bifunctional agent glutaraldehyde. The bound enzyme retained 54.2% of the original specific activity exhibited by the free enzyme (120 U/mg protein). Compared to the free enzyme, the immobilized enzyme exhibited lower optimum pH, higher optimum reaction temperature, lower energy of activation, higher Km (Michaelis constant), lower Vmax (maximal reaction rate). The half-life for the free enzyme was 186.0, 93.0, and 50.0 min for 40, 50, and 60°C, respectively, whereas the immobilized form at the same temperatures had half-life of 320, 136, and 65 min. The deactivation rate constant at 60°C for the immobilized enzyme is about 6.0 × 10−3, which is lower than that of the free enzyme (7.77 × 10−3 min). The energy of thermal deactivation was 15.22 and 20.72 kcal/mol, respectively for the free and immobilized enzyme, confirming stabilization by immobilization. An external mass transfer resistance was identified with the immobilization carrier (Duolite A147). The effect of some metal ions on the activity of the free and immobilized xylanase has been investigated. The immobilized enzyme retained about 73.0% of the initial catalytic activity even after being used 8 cycles.  相似文献   

16.
In present studies, the new optical sensing platform based on optical planar waveguide (OPWG) for sucrose estimation was reported. An evanescent-wave biosensor was designed by using novel agarose–guar gum (AG) biopolymer composite sol–gel with entrapped enzymes (acid invertase (INV) and glucose oxidase (GOD)). Partially purified watermelon invertase isolated from Citrullus vulgaris fruit (specific activity 832 units mg−1) in combination with GOD was physically entrapped in AG sol–gel and cladded on the surface of optical planar waveguide. Na+–K+ ion-exchanged glass optical waveguides were prepared and employed for the fabrication of sucrose biosensor. By addressing the enzyme modified waveguide structure with, the optogeometric properties of adsorbed enzyme layer (12 μm) at the sensor solid–liquid interface were studied. The OPWG sensor with short response time (110 s) was characterized using the 0.2 M acetate buffer, pH 5.5. The fabricated sucrose sensor showed concentration dependent linear response in the range 1 × 10−10 to 1 × 10−6 M of sucrose. Lower limit of detection of this novel AG–INV–GOD cladded OPWG sensor was found to be 2.5 × 10−11 M sucrose, which indicates that the developed biosensor has higher sensitivity towards sucrose as compared to earlier reported sensors using various transducer systems. Biochips when stored at room temperature, showed high stability for 81 days with 80% retention of original sensitivity. These sucrose sensing biochips showed good operational efficiency for 10 cycles. The proper confinement of acid invertase and glucose oxidase in hydrogel composite was confirmed by scanning electron microscopy (SEM) images. The constructed OPWG sensor is versatile, easy to fabricate and can be used for sucrose measurements with very high sensitivity.  相似文献   

17.
The authors incubated adrenal mitochondria to study the in vitro action of cortisol and testosterone on the transformation of corticosterone and 18-hydroxycorticosterone into aldosterone. The results show that cortisol at concentrations of 5 × 10−6 and 10−4 M inhibit the conversion of corticosterone into aldosterone by 23.6 to 90%; testosterone 5 × 10−5 and 10−4 M inhibit the reaction by 78.4 and 87.2%, respectively. The inhibition of the conversion of 18-hydroxycorticosterone into aldosterone is 12.5 to 91% by cortisol with concentrations ranging from 5 × 10−7 to 5 × 10−5 M and testosterone 5 × 10−5 and 10−4 M inhibits the reaction by 87.3 and 91%, respectively. Aldosterone (10−8 and 10−6 M) does not inhibit aldosterone biosynthesis from corticosterone or 18-hydroxycorticosterone. It thus appears that cortisol and testosterone have an effect on the aldosterone biosynthesis pathways in mitochondria. This action may be located at the binding site of the cytochrome P450 11β, which catalyzes all hydroxylation steps in the mineralocorticoid biosynthesis pathway. Because cortisol and testosterone may interfere with aldosterone biosynthesis, and since functional zonation is expected in adrenal carcinomas, the presence of these steroids in substantial amounts could explain the very low plasma aldosterone level usually observed, in adrenal carcinomas studies in our laboratory.  相似文献   

18.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

19.
Li X  Shen L  Zhang D  Qi H  Gao Q  Ma F  Zhang C 《Biosensors & bioelectronics》2008,23(11):1624-1630
A simple and highly sensitive electrochemical impedance spectroscopy (EIS) biosensor based on a thrombin-binding aptamer as molecular recognition element was developed for the determination of thrombin. The signal enhancement was achieved by using gold nanoparticles (GNPs), which was electrodeposited onto a glassy carbon electrode (GCE), as a platform for the immobilization of the thiolated aptamer. In the measurement of thrombin, the change in interfacial electron transfer resistance of the biosensor using a redox couple of [Fe(CN)6]3−/4− as the probe was monitored. The increase of the electron transfer resistance of the biosensor is linear with the concentration of thrombin in the range from 0.12 nM to 30 nM. The association and dissociation rate constants of the immobilized aptamer–thrombin complex were 6.7 × 103 M−1 s−1 and 1.0 × 10−4 s−1, respectively. The association and dissociation constants of three different immobilized aptamers binding with thrombin were measured and the difference of the dissociation constants obtained was discussed. This work demonstrates that GNPs electrodeposited on GCE used as a platform for the immobilization of the thiolated aptamer can improve the sensitivity of an EIS biosensor for the determination of protein. This work also demonstrates that EIS method is an efficient method for the determination of association and dissociation constants on GNPs modified GCE.  相似文献   

20.
The enzymatic activity of mushroom tyrosinase was investigated using catechin as substrate in selected organic solvent media. The results showed that optimal tyrosinase activity was obtained at pH 6.2, 6.6, 6.0 and 6.2 in the organic solvent media of heptane, toluene, dichloromethane, and dichloroethane, respectively, and at a temperature between 25°C and 27.5°C. In addition, the kinetic studies showed that the Km values were 5.38, 1.03, 2.52 and 4.03 mM, for the tyrosinase-catechin biocatalysis in the reaction media of heptane, toluene, dichloromethane, and dichloroethane, respectively, while the corresponding Vmax values were 1.22×10−3, 0.33×10−3, 1.47×10−3 and 1.20×10−3 δA per μg protein per second, respectively. The use of acetone as co-solvent for the tyrosinase-catechin biocatalysis showed that acetone concentrations ranging from 5% to 30% (v/v) in the heptane reaction medium produced a decrease of 4.3% to 96.7% in tyrosinase activity. The results also indicated that the presence of 12.5% acetone in the reaction medium of dichloromethane, and 22.0% in those of toluene and dichloroethane produced a maximal increase of 42.6%, 92.1% and 71.8%, respectively, in tyrosinase activity. However, the overall findings indicated that additional increases in acetone concentration resulted in an inhibition of tyrosinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号