首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The receptor for diuretic hormone 31 (DH31R) was identified in the silkworm Bombyx mori. A heterologous expression system revealed that an orphan G-protein coupled receptor, BNGR-B1, responded to DH31 and upregulated the intracellular cAMP level. DH31R (BNGR-B1) was predominantly expressed in the anterior silk gland, midgut, and ovary, whereas DH31 was predominantly expressed in the central nervous system and midgut.  相似文献   

2.
Destruxins have been implicated in the infection process by entomopathogenic fungi and have been also found to be highly toxic when applied topically or ingested by different insect species. To gain insight into the mechanism of action of this toxin on insect internal organs, we have evaluated the effects of destruxin A on Drosophila melanogaster Malpighian tubules and gut tissues. Destruxin A was toxic when injected into adults; the calculated EC50 was 0.11 mM. Destruxin A significantly inhibited fluid secretion rate by Malpighian tubules as well; the calculated IC50 was 0.25 μM. The Na+ concentration in the secreted fluid increased significantly when tubules were exposed to 0.25 μM destruxin A, whereas pH and the concentrations of Ca2+ and K+ did not change. In gut, there was no effect of destruxin on H+ flux, but there was a significant decrease in K+ and Ca2+ absorption. The concentration of Ca2+ and K+ in the hemolymph of destruxin A‐injected flies was not significantly different from those of control flies after 3 h. Taken together, these results show that destruxin A produces differential effects on ion transport by renal and gut tissues. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The plasma membrane H+ V-ATPase from the midgut of larval Manduca sexta, commonly called the tobacco hornworm, is the sole energizer of epithelial ion transport in this tissue, being responsible for the alkalinization of the gut lumen up to a pH of more than 11 and for any active ion movement across the epithelium. This minireview deals with those topics of our recent research on this enzyme that may contribute novel aspects to the biochemistry and physiology of V-ATPases. Our research approaches include intramolecular aspects such as subunit topology and the inhibition by macrolide antibiotics, intermolecular aspects such as the hormonal regulation of V-ATPase biosynthesis and the interaction of the V-ATPase with the actin cytoskeleton, and supramolecular aspects such as the interactions of V-ATPase, K+/H+ antiporter, and ion channels, which all function as an ensemble in the transepithelial movement of potassium ions.  相似文献   

4.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   

5.
We determined some biochemical properties of Oulema melanopus larval gut proteases. We found adult midgut enzyme preparations yielded results similar to whole‐larval preparations, permitting studies of the very small whole‐larval preparations. Protein preparations were analyzed using FITC–casein as a substrate. Acidic pH is optimal for proteolytic activity (range 3.0–4.0). Cysteine protease activity increased at acidic pH and in the presence of β‐mercaptoethanol. Protease activities at all pH values were maximal at 45°C. Enzyme activity in larval preparations was inhibited by addition of Fe2+, Ca2+, Mg2+, Zn2+, and K+ (10 mM). Fe2+ and Zn2+ significantly decreased enzyme activity at all pH values, Ca2+ and Mg2+ at pH 6.2 and Mg2+ at pH 4.0. Inhibitors, including pepstatin A, showed the greatest inhibition at pH 4.0; phenylmethylsulfonyl fluoride, N‐p‐tosyl‐l‐phenylalanine chloromethyl ketone at pH 6.2; and phenylmethylsulfonyl fluoride, Nα‐tosyl‐l‐lysine chloromethyl ketone hydrochloride, N‐p‐tosyl‐l‐phenylalanine chloromethyl ketone, trans‐epoxysuccinyl‐l‐leucylamido‐(4‐guanidino) butane at pH of 7.6. Inhibition assays indicated that cysteine, aspartyl (cathepsin D), serine (trypsin, chymotrypsin‐like) proteases and metalloproteases act in cereal leaf beetle digestion.  相似文献   

6.
1. The pentapeptide proctolin produced contractions of the coxal depressor muscle of the cockroach, Periplaneta americana.2. The contraction was dependent upon extracellular calcium and the contraction was completely blocked by a Ca-free EGTA saline.3. Caffeine elicited transient contractions which were unaffected by manganese treatment.4. When the muscle was pre-treated with the conditioning solution with different K+ concentrations (1–100 mM), the amplitude of proctolin-induced contractions was reduced in the low K+ saline as well as in the high K+ saline.5. The results suggest that voltage sensitive calcium channels account for the proctolin-induced contractions.6. Octopamine (OA) reduced the contractions resulting from brief applications of elevated K+ concentration and of caffeine.7. The effect of OA on the response to elevated K+ concentrations was blocked by the α-adrenergic blocker, phentolamine.  相似文献   

7.
The isolated midgut of larval Sarcophaga bullata actively accumulates Na+ from the gut lumen into the haemolymph. The active transport of Na+ out of the gut lumen is responsible for the transepithelial potential difference measured across the midgut epithelium, such that the midgut lumen is negative in respect to the haemolymph side. Both the net movement of Na+ out of the midgut lumen and the transepithelial potential are inhibited by CN? and, in addition, the potential in blocked by ouabain.  相似文献   

8.
Insensitivity of midgut epithelium to ouabain was studied in three phytophyagous Lepidoptera: the tobacco hornworm. Manduca sexta, the Cecropia silkmoth. Hyalophora cecropia, and the Monarch butterfly, Danaus plexippus. The midgut failed to selectively bind ouabain in the presence of 8 mM K?. The presence of K+ stimulated ouabain sensitive Na+K+-ATPases in midgut could not be confirmed. Neuronal tissues collected from the same species at the same stages in development bound ouabain readily, and possessed K+ stimulated ouabain sensitive Na+K+-ATPases. It is proposed that alkali metal transport across the midgut epithelium of these phytophagous Lepidoptera occurs via energy-linked processes not requiring Na+K+-ATPases.  相似文献   

9.
Abstract— The effects of brief exposures of a number of depolarizing agents on 24Na+ influx and on the Na+, K+ and ATP contents of synaptosomes were studied using a Millipore filtration technique to terminate the reaction. When synaptosomes were incubated in normal medium, there was a rapid influx of 24Na+ and a gain in Na’contents; neither the 24Na+ influx nor the Na+ gain were blocked by tetrodotoxin suggesting that this Na+ entry did not involve Na+-channels. Veratridine markedly increased the rate of 24Na+ influx into synaptosomes and also increased the Na+ content and decreased the K+ content of synaptosomes within the first 10s of exposure. The normal ion contents were reversed by 1 min. The effects of veratridine on Na+ influx and on synaptosomal ion contents were prevented by tetrodotoxin and required Na+ in the medium. The ionophores gramicidin D and valinomycin also rapidly reversed the Na+ and K+ contents of synaptosomes, but these effects could not be blocked by tetrodotoxin. The reducing effect of gramicidin D on synaptosomal K+ content required Na’in the medium, whereas valinomycin caused a fall in the K+ content of synaptosomes in a Na+-free medium. Veratridine and gramicidin D, at concentrations known to reverse the synaptosomal ion contents, did not affect synaptosomal ATP levels. In contrast, valinomycin and NaCN caused an abrupt fall in synaptosomal ATP levels. The above findings suggest that veratridine quickly alters synaptosomal Na+ and K+ contents by opening Na +-channels in the presynaptic membrane, and provide direct evidence for the existence of Na+-channels in synaptosomes. In contrast, gramicidin D and valinomycin appear to act independently of Na +-channels, possibly by their ionophoric effects and, in the case of valinomycin, by diminishing synaptosomal ATP contents and hence diminishing Na+-pump activity. The rapid reversals of Na+ and K+ contents by these drugs could affect the resting membrane potentials, Na+-Ca2+ exchange across the synaptosomal membrane, and the release, synthesis and uptake of neurotransmitters by synaptosomes.  相似文献   

10.
The local anesthetic dibucaine inhibited respiration-dependent contraction mediated by the K+/H+ antiport system of isolated corn mitochondria. Respiration declined concurrently. Nigericin, an exogenous K+/H+ exchanger, restored ion efflux in dibucaine-blocked corn mitochondria. It was concluded that dibucaine inhibited ion efflux via blockage of the K+/H+ antiport. Further experiments determined that dibucaine also inhibited proton influx facilitated by protonophores and by the ATPase complex during state III respiration. These results are discussed in relation to the mechanism by which dibucaine inhibits proton translocation across the inner mitochondrial membrane.  相似文献   

11.
The general pathology induced by δ-endotoxin in terms of larval behavior and hemolymph chemistry has been widely studied in the so-called Type I insect, Bombyx mori. The succession of symptoms is divided into four arbitrary stages: Stage 0, appearance and locomotion normal, no feeding; Stage 1, slightly sluggish; Stage 2, extremely sluggish; and Stage 3, complete paralysis. The action of δ-endotoxin is highly specific to the midgut since contractile movement of both foregut and hindgut continues long after all locomotor activity and heartbeat have stopped. Immediately after the silkworm stops feeding and blood pH sharply rises, there is an associated abrupt rise in the K+ concentration of hemolymph. Thereafter, the rise in K+ is linear while the rise in pH is not. In vivo measurements have not yielded the same simple linear dependence of pH on K+ concentrations that is found in in vitro mixtures of hemolymph and midgut juice. Ligation experiments showed that the same pathological sequence (rise of pH and K+ concentration, and general paralysis) follows whether the toxin has unrestricted access to the entire midgut or only part of it (anterior or posterior). From the results of injections of midgut juice or various salt solutions into hemocoel, we came to the conclusions that the blood pH and the symptoms are not necessarily parallel and the intact midgut and Malpighian tubules have strong functions for ion regulation.  相似文献   

12.
In this study, the effects of tributyltin (TBT) on biochemical parameters (antioxidant responses and Na+‐K+‐ATPase) in different tissues were investigated by using juvenile common carp (Cyprinus Carpio) as well as growth and ion regulation–related genes expression and stress‐related proteins profiling in fish liver. Oxidative stress indices and Na+‐K+‐ATPase showed tissues‐specific responses in fish exposed to different TBT concentrations. All tested genes related to GH/IGF‐I axis and ion‐regulation were significantly induced in the TBT group with lower concentrations (except for the igfbp3 in 10 μg/L) and were inhibited in 20 μg/L. In addition, the profiling of two proteins Hsp 70 and MT were increasing in a dose‐dependent manner under TBT stress. In short, TBT‐induced biochemical and molecular responses in different tissues were reflected in the measured parameters in the test. On the basis of TBT residue levels in the natural environment, more long‐term experiments at lower concentrations will be necessary in the future.  相似文献   

13.
Effects of ammonium on the photosynthetic recovery of Nostoc flagelliforme Berk. et M. A. Curtis were assayed when being rehydrated in low‐K+ or high‐K+ medium. Its photosynthetic recovery was K+ limited after 3 years of dry storage. The potassium absorption of N. flagelliforme reached the maximum after 3 h rehydration in low‐K+ medium but at 5 min in high‐K+ medium. The K+ content of N. flagelliforme rehydrated in high‐K+ medium was much higher than that in low‐K+ medium. The maximal PSII quantum yield (Fv/Fm) value of N. flagelliforme decreased significantly when samples were rehydrated in low‐K+ medium treated with 5 mM NH4Cl. However, the treatment of 20 mM NH4Cl had little effect on its Fv/Fm value in high‐K+ medium. The relative Fv/Fm 24 h EC50 (concentration at which 50% inhibition occurred) value of NH4+ in high‐K+ medium (64.35 mM) was much higher than that in low‐K+ medium (22.17 mM). This finding indicated that high K+ could alleviate the inhibitory action of NH4+ upon the photosynthetic recovery of N. flagelliforme during rehydration. In the presence of 10 mM tetraethylammonium chloride (TEACl), the relative Fv/Fm 24 h EC50 value of NH4+ was increased to 46.34 and 70.78 mM, respectively, in low‐K+ and high‐K+ media. This observation suggested that NH4+ entered into N. flagelliforme cells via the K+ channel. Furthermore, NH4+ could decrease K+ absorption in high‐K+ medium.  相似文献   

14.
Prostaglandin E2 (PGE2) is quantitatively one of the major prostaglandins synthesized in mammalian brain, and there is evidence that it facilitates seizures and neuronal death. However, little is known about the molecular mechanisms involved in such excitatory effects. Na+,K+‐ATPase is a membrane protein which plays a key role in electrolyte homeostasis maintenance and, therefore, regulates neuronal excitability. In this study, we tested the hypothesis that PGE2 decreases Na+,K+‐ATPase activity, in order to shed some light on the mechanisms underlying the excitatory action of PGE2. Na+,K+‐ATPase activity was determined by assessing ouabain‐sensitive ATP hydrolysis. We found that incubation of adult rat hippocampal slices with PGE2 (0.1–10 μM) for 30 min decreased Na+,K+‐ATPase activity in a concentration‐dependent manner. However, PGE2 did not alter Na+,K+‐ATPase activity if added to hippocampal homogenates. The inhibitory effect of PGE2 on Na+,K+‐ATPase activity was not related to a decrease in the total or plasma membrane immunocontent of the catalytic α subunit of Na+,K+‐ATPase. We found that the inhibitory effect of PGE2 (1 μM) on Na+,K+‐ATPase activity was receptor‐mediated, as incubation with selective antagonists for EP1 (SC‐19220, 10 μM), EP3 (L‐826266, 1 μM) or EP4 (L‐161982, 1 μM) receptors prevented the PGE2‐induced decrease of Na+,K+‐ATPase activity. On the other hand, incubation with the selective EP2 agonist (butaprost, 0.1–10 μM) increased enzyme activity per se in a concentration‐dependent manner, but did not prevent the inhibitory effect of PGE2. Incubation with a protein kinase A (PKA) inhibitor (H‐89, 1 μM) and a protein kinase C (PKC) inhibitor (GF‐109203X, 300 nM) also prevented PGE2‐induced decrease of Na+,K+‐ATPase activity. Accordingly, PGE2 increased phosphorylation of Ser943 at the α subunit, a critical residue for regulation of enzyme activity. Importantly, we also found that PGE2 decreases Na+,K+‐ATPase activity in vivo. The results presented here imply Na+,K+‐ATPase as a target for PGE2‐mediated signaling, which may underlie PGE2‐induced increase of brain excitability.  相似文献   

15.
16.
5-Hydroxytryptamine (5-HT, serotonin) acts as a diuretic hormone in Rhodnius prolixus, where it increases to 0.1 μM in the haemolymph during feeding and stimulates the fluid secretion in isolated Malpighian tubules. The ouabain-sensitive (Na++K+)ATPase activity present in homogenates of Malpighian tubules from unfed Rhodnius prolixus is inhibited 60% by 0.01 μM 5-HT. This inhibition is reversed by ketanserin, a 5-HT2 receptor antagonist in mammals, and also by GDPβS, a competitive inhibitor of G-protein GTPase activity. GTPγS, a nonhydrolysable analog of GTP, and cholera toxin, a Gs-protein activator, also inhibit the ouabain-sensitive (Na++K+)ATPase activity, while pertussis toxin, a Gi-protein inhibitor, has no effect. The (Na++K+)ATPase activity is inhibited 55% by 0.4–100 μM dibutyryl-cAMP in the presence of IBMX, a phosphodiesterase inhibitor, which also potentiates the effect of a low concentration of 5-HT. The cAMP-dependent protein kinase inhibitor peptide abolishes the 5-HT effect. These data suggest that the (Na++K+)ATPase activity in Malpighian tubules is inhibited by 5-HT through activation of Gs-protein and a cAMP-dependent protein kinase. Inhibition of the Na++K+ pump would contribute to the diuretic effect of 5-HT. Arch. Insect Biochem. Physiol. 36:203–214, 1997. © 1997 Wiley- Liss, Inc.  相似文献   

17.
—The importance of extracellular choline transport to spontaneous and K+ depolarized release of ACh was studied using mouse brain cortex minces. The results suggest that extracellular choline transport is not essential to spontaneously released ACh but is essential to K+ depolarized ACh release. Similar cumulative amounts of choline and ACh were found in the incubation media following incubation of minces in either Krebs or 35 mm -K+ Krebs suggesting the same production of free choline during both conditions. Double reciprocal plots of choline accumulation by non-depolarized cortex minces yield high and low affinity components. Conversely, similar analysis of choline accumulation by depolarized minces yields a single Michaelis constant (68 μm ) similar to the low affinity (50 μm ) Michaelis constant determined for choline accumulation by non-depolarized minces. Kinetic analysis of ACh release as a function of extracellular choline concentration during K+ depolarization also yields a Michaelis constant of 68 μm These data suggest a link between choline transport and ACh release during K+ depolarization.  相似文献   

18.
Fast reaction kinetics of ATP hydrolysis by Na,K‐ATPase has been investigated by following absorption pattern of pH sensitive dye in stopped flow spectrophotometer. Distinct pre‐steady state phase signal could be recorded with an initial decrease in acidity followed by increase in acidity. Average half time for H+ absorption and peak alkalinity was, respectively, 30 ms and 60 ms. Under optimal Na+ (120 mM) and K+ (30 mM) concentrations, magnitude of both H+ absorption and H+ release are found to be about 1.0 H+/ATPase molecule. H+ absorption and release decreased with decrease in Na+ concentration, H+ release was more affected. Both H+ absorption and H+ release are found to be independent of K+ concentration in the pre‐steady state phase. No H+ absorption or release was observed following mixing of either ADP, Na+ or K+ alone with ATPase. Effect of delayed mixing of Na+ or K+ on two phases of pre‐steady state cycle indicates that ATP hydrolytic cycle starts without K+ ions if optimal Na+ is present. ATP hydrolytic cycle does not start in the absence of Na+ ions. Results obtained have been interpreted in terms of an extended kinetic scheme for Na,K‐ATPase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The frontal ganglion (FrG) in insects contributes to the modulation of feeding behavior via the regulation of foregut contraction and other neural networks. Profiling the peptides of the FrG is important to understand endocrine regulation of feeding behavior in insects. High-resolution spiral matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identified an ion peak, corresponding to calcitonin-like diuretic hormone 31 (CT/DH) in the FrG of silkworm Bombyx mori larvae. RT-PCR confirmed that CT/DH is expressed in the FrG, as are other peptide hormones, including allatoregulatory peptides. A feeding latency assay using synthetic CT/DH revealed that it increases the time to the initiation of feeding in a dose-dependent manner. These data indicate that CT/DH is a candidate regulatory peptide that modulates the feeding behavior of B. mori.  相似文献   

20.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号