首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Pristine New Zealand forest soil is a strong methane sink   总被引:1,自引:0,他引:1  
Methanotrophic bacteria oxidize methane (CH4) in forest soils that cover ~30% of Earth's land surface. The first measurements for a pristine Southern Hemisphere forest are reported here. Soil CH4 oxidation rate averaged 10.5±0.6 kg CH4 ha?1 yr?1, with the greatest rates in dry warm soil (up to 17 kg CH4 ha?1 yr?1). Methanotrophic activity was concentrated beneath the organic horizon at 50–100 mm depth. Water content was the principal regulator of (r2=0.88) from the most common value of field capacity to less than half of this when the soil was driest. Multiple linear regression analysis showed that soil temperature was not very influential. However, inverse co‐variability confounded the separation of soil water and temperature effects in situ. Fick's law explained the role of water content in regulating gas diffusion and substrate supply to the methanotrophs and the importance of pore size distribution and tortuosity. This analysis also showed that the chambers used in the study did not affect the oxidation rate measurements. The soil was always a net sink for atmospheric CH4 and no net CH4 (or nitrous oxide, N2O) emissions were measured over the 17‐month long study. For New Zealand, national‐scale extrapolation of our data suggested the potential to offset 13% of CH4 emissions from ca. 90 M ruminant animals. Our average was about 6.5 times higher than rates reported for most Northern Hemisphere forest soils. This very high was attributed to the lack of anthropogenic disturbance for at least 3000–5000 years and the low rate of atmospheric nitrogen deposition. Our truly baseline data could represent a valid preagricultural, preindustrial estimate of the soil sink for temperate latitudes.  相似文献   

2.
Methanotrophs use methane (CH4) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH4 oxidation in soil with afforestation or reforestation is poorly understood. Here, soil CH4 oxidation was examined in New Zealand volcanic soils under regenerating native forests following burning, and in a mature native forest. Results were compared with data for pasture to pine land-use change at nearby sites. We show that following soil disturbance, as little as 47 years may be needed for development of a stable methanotrophic community similar to that in the undisturbed native forest soil. Corresponding soil CH4-oxidation rates in the regenerating forest soil have the potential to reach those of the mature forest, but climo-edaphic fators appear limiting. The observed changes in CH4-oxidation rate were directly linked to a prior shift in methanotrophic communities, which suggests microbial control of the terrestrial CH4 flux and identifies the need to account for this response to afforestation and reforestation in global prediction of CH4 emission.  相似文献   

3.
Aims:  To combine molecular and cultivation techniques to characterize the methanotrophic community in the soil–water interface (SWI) and rhizospheric soil from flooded rice fields in Uruguay, a temperate region in South America.
Methods and Results:  A novel type I, related to the genus Methylococcus , and three type II methanotrophs were isolated from the highest positive dilution steps from the most probable number (MPN) counts. Potential methane oxidation activities measured in slurried samples were higher in the rhizospheric soil compared to the SWI and were stimulated by N-fertilization. PmoA (particulate methane monooxygenase) clone libraries were constructed for both rice microsites. SWI clones clustered in six groups related to cultivated and uncultivated members from different ecosystems of the genera Methylobacter , Methylomonas , Methylococcus and a novel type I sublineage while cultivation and T-RFLP (terminal restriction fragment length polymorphism) analysis confirmed the presence of type II methanotrophs.
Conclusions:  Cultivation techniques, cloning analysis and T-RFLP fingerprinting of the pmoA gene revealed a diverse methanotrophic community in the rice rhizospheric soil and SWI.
Significance and Impact of the Study:  This study reports, for the first time, the analysis of the methanotrophic diversity in rice SWI and this diversity may be exploited in reducing methane emissions.  相似文献   

4.
氮沉降对温带森林土壤甲烷氧化菌的影响   总被引:1,自引:0,他引:1  
张丹丹  莫柳莹  陈新  张丽梅  徐星凯 《生态学报》2017,37(24):8254-8263
大量研究显示氮沉降影响森林甲烷吸收量,但其中的微生物驱动机制仍缺乏研究。基于长白山典型温带森林长期氮沉降模拟实验平台样地,采用定量PCR和克隆测序技术,研究了长期施加不同形态氮((NH_4)_2SO_4、NH_4Cl和KNO_3)处理下森林土壤甲烷氧化菌的数量和群落组成随季节变化的特征。结果表明,夏季,森林土壤甲烷氧化菌pmo A基因丰度在不同施氮处理之间无显著性差异(每克干土1.54×10~6-3.20×10~6拷贝数);秋季,pmo A基因丰度在施加NH_4Cl和(NH_4)_2SO_4处理小区(每克干土1.93×10~5-7.6×10~5拷贝数)与对照(每克干土(4.03×10~6±1.2×10~6)拷贝数)相比有所降低,尤其在(NH_4)_2SO_4处理小区(每克干土(4.61×10~5±2.61×10~5)拷贝数)显著降低;无论夏季还是秋季,施加不同形态氮处理土壤甲烷氧化菌均以Type I型为主(相对丰度在70.6%-85.4%之间),并以Methylobacter-group(Type I)为优势类群,占Type I型的55.1%-91.7%;Methylobacter-group(Type I)的相对丰度在夏季不同形态氮处理土壤样品中无显著差异,但秋季样品中在施加(NH_4)_2SO_4(52.7%±6.5%)和NH_4Cl(56.1%±8.9%)的处理显著低于对照土壤(77.0%±2.9%),Methylococcus-group(Type I)的相对丰度则在(NH_4)_2SO_4和NH_4Cl处理土壤呈增加的趋势。这些结果表明铵态氮肥添加对温带森林土壤甲烷氧化菌的生长具有抑制作用并导致其群落结构发生改变,受夏季温度和水分的影响,这种抑制作用在秋季表现更明显,而NO_3~--N添加对土壤甲烷氧化菌的群落组成和丰度无显著影响。这些结果解释了以往观测到的施铵态氮肥显著降低秋季温带林地土壤甲烷净吸收量,而在夏季无显著影响的观测结果,解释了长期氮沉降影响森林土壤甲烷吸收的微生物机制。  相似文献   

5.
Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.  相似文献   

6.
大气CO2浓度升高可能对森林土壤的甲烷(CH4)氧化速率产生影响.本文采用开顶箱技术,对连续6年高浓度CO2(500 μmol·mol-1)处理的长白山森林典型树种蒙古栎树下土壤CH4氧化速率进行研究,并利用CH4氧化菌的16S rRNA特异性引物以及CH4单加氧酶功能基因引物分析了土壤中CH4氧化菌的群落结构与数量.结果表明:CO2浓度增高后,生长季土壤甲烷氧化量与对照和裸地相比分别降低了4%和22%;基于16S rRNA特异性引物的DGGE分析表明,CO2浓度增高导致两类甲烷氧化菌的多样性指数降低;CO2浓度增高对土壤中Ⅰ类甲烷氧化菌数量无显著影响,而使土壤中Ⅱ类甲烷氧化菌数量显著减少,功能基因pmoA拷贝数与对照和裸地相比分别降低了15%和46%.CO2浓度增高导致森林土壤甲烷氧化菌数量与活性降低,土壤含水量的增加可能是导致这一现象的主要原因.  相似文献   

7.
Methanotroph abundance was analyzed in control and long-term nitrogen-amended pine and hardwood soils using rRNA-targeted quantitative hybridization. Family-specific 16S rRNA and pmoA/amoA genes were analyzed via PCR-directed assays to elucidate methanotrophic bacteria inhabiting soils undergoing atmospheric methane consumption. Quantitative hybridizations suggested methanotrophs related to the family Methylocystaceae were one order of magnitude more abundant than Methyloccocaceae and more sensitive to nitrogen-addition in pine soils. 16S rRNA gene phylotypes related to known Methylocystaceae and acidophilic methanotrophs and pmoA/amoA gene sequences, including three related to the upland soil cluster Alphaproteobacteria (USCalpha) group, were detected across different treatments and soil depths. Our results suggest that methanotrophic members of the Methylocystaceae and Beijerinckiaceae may be the candidates for soil atmospheric methane consumption.  相似文献   

8.
Trichloroethylene (TCE) oxidation was examined in 9 different methanotrophs grown under conditions favoring expression of the membrane associated methane monooxygenase. Depending on the strain, TCE oxidation rates varied from 1 to 677 pmol/min/mg cell protein. Levels of TCE in the reaction mixture were reduced to below 40 nmolar in some strains. Cells incubated in the presence of acetylene, a selective methane monooxygenase inhibitor, did not oxidize TCE.Cultures actively oxidizing TCE were monitored for the presence of the soluble methane monooxygenase (sMMO) and membrane associated enzyme (pMMO). Transmission electron micrographs revealed the cultures always contained the internal membrane systems characteristic of cells expressing the pMMO. Naphthalene oxidation by whole cells, or by the cell free, soluble or membrane fractions was never observed. SDS denaturing gels of the membrane fraction showed the polypeptides associated with the pMMO. Cells exposed to 14C-acetylene showed one labeled band at 26 kDa, and this protein was observed in the membrane fraction. In the one strain examined by EPR spectroscopy, the membrane fraction of TCE oxidizing cells showed the copper complexes characteristic of the pMMO. Lastly, most of the strains tested showed no hybridization to sMMO gene probes. These findings show that the pMMO is capable of TCE oxidation; although the rates are lower than those observed for the sMMO.  相似文献   

9.
稻田内源甲烷的氧化是稻田甲烷减排的重要途径。而甲烷氧化菌是土壤中甲烷氧化的主要施动者,在长期不同施肥条件下,土壤微生物群落的演变是否影响到土壤甲烷氧化菌群落结构及其活性,进而影响到田土壤CH4向大气的实际排放强度还不清楚。为此,选择太湖地区一个长期肥料试验的稻田土壤为研究对象,分析长期不同肥料施用对土壤甲烷氧化能力的影响及其与土壤中甲烷氧化菌群落结构变化的可能关系。结果表明,长期不同的施肥措施下稻田土壤对甲烷的氧化能力产生了明显差异,伴随着土壤中甲烷氧化菌(MOBI和MOBII)的基因群落多样性的显著变化。长期单一施用氮肥为主的化肥显著降低了土壤对甲烷的氧化能力,同时显著降低了稻田土壤甲烷氧化菌的多样性和丰富度;不同施肥下甲烷氧化菌多样性的变化与土壤的甲烷氧化能力的变化趋势相一致。因此,研究显示长期不同施肥处理下甲烷氧化菌群落结构的改变可能是引起水稻土甲烷氧化能力变化的一个主要因素,有机无机配合施用可以明显降低稻田土壤甲烷的大气释放潜能。但长期不同施肥处理下甲烷氧化菌活性的变化还有待于进一步研究。  相似文献   

10.
Methanotrophs are ubiquitous in soil, fresh water and the open ocean, but have not been well characterized in deep-sea hydrocarbon seeps and gas hydrates, where methane is unusually abundant. Here we report the presence of new functional genes for the aerobic oxidation of methane by methanotrophs in marine sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. Samples were collected from two hydrate locations (GC185 and GC234): one hydrocarbon-seep location at a brine pool (GC233) and one background-marine location about 1.2 miles north of the brine pool (NBP). Community DNA was extracted from each location to establish clone libraries for the pmoA functional gene using a PCR-based cloning approach. Three hundred and ninety clones were screened by sequencing and 46 operational taxonomic units were obtained. Eight operational taxonomic units were present in every sample; one of them was predominant and accounted for 22.8-25.3% of each clone library. Principal-component analysis indicated that samples GC185 and GC234 were closely related and, along with GC233, were significantly different from NBP. These results indicate that methanotrophic communities may be similarly impacted by hydrocarbons at the gas-hydrate and seep sites, and can be distinguished from methanotrophic communities in the normal marine sediment. Furthermore, cluster analysis showed that 84.8% of operational taxonomic units from all samples formed distinct clusters, which could not be grouped with any published pmoA sequences, indicating that a considerable number of novel methanotrophic species may exist in the Gulf of Mexico.  相似文献   

11.
Because methane-oxidizing bacteria (MOB) are the only biological sink for the greenhouse gas methane, knowledge of the functioning of these bacteria in various ecosystems is needed to understand the dynamics observed in global methane emission. The activity of MOB is commonly assessed by methane oxidation assays. The resulting methane depletion curves often follow a biphasic pattern of initial and induced methane oxidation activity, often interpreted as representing the in situ active and total MOB community, respectively. The application of quantitative-PCR on soil incubations, which were stopped before, at and after the transition point in the methane-depletion curve, demonstrated that both pmoA -mRNA was produced as well as substantial cell growth took place already in the initial phase. In addition, type Ia and II MOB displayed markedly different behaviour, which can be interpreted as ecologically different strategies. For the correct interpretation of methane oxidation assays, the use of small time windows is recommended to calculate methane oxidation activities to avoid substantial cell growth.  相似文献   

12.
Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus / Methylocystis , type I methanotrophs related to Methylobacter / Methylosoma and Methylococcus , and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using 13CH4 were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella , which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium , were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments.  相似文献   

13.
Rates of atmospheric CH4 consumption of soils in temperate forest were compared in plots continuously enriched with CO2 at 200 µL L?1 above ambient and in control plots exposed to the ambient atmosphere of 360 µL CO2 L?1. The purpose was to determine if ecosystem atmospheric CO2 enrichment would alter soil microbial CH4 consumption at the forest floor and if the effect of CO2 would change with time or with environmental conditions. Reduced CH4 consumption was observed in CO2‐enriched plots relative to control plots on 46 out of 48 sampling dates, such that CO2‐enriched plots showed annual reductions in CH4 consumption of 16% in 1998 and 30% in 1999. No significant differences were observed in soil moisture, temperature, pH, inorganic‐N or rates of N‐mineralization between CO2‐enriched and control plots, indicating that differences in CH4 consumption between treatments were likely the result of changes in the composition or size of the CH4‐oxidizing microbial community. A repeated measures analysis of variance that included soil moisture, soil temperature (from 0 to 30 cm), and time as covariates indicated that the reduction of CH4 consumption under elevated CO2 was enhanced at higher soil temperatures. Additionally, the effect of elevated CO2 on CH4 consumption increased with time during the two‐year study. Overall, these data suggest that rising atmospheric CO2 will reduce atmospheric CH4 consumption in temperate forests and that the effect will be greater in warmer climates. A 30% reduction in atmospheric CH4 consumption by temperate forest soils in response to rising atmospheric CO2 will result in a 10% reduction in the sink strength of temperate forest soils in the atmospheric CH4 budget and a positive feedback to the greenhouse effect.  相似文献   

14.
李君怡  席毅  赵俊福 《生态学报》2022,42(12):4978-4987
森林土壤是一个重要的大气甲烷的汇。然而,相较于寒带和温带,在热带尤其是东南亚地区,森林土壤甲烷通量的观测较少,这限制了目前对热带森林土壤甲烷通量与环境因子之间关系的认识,也给热带森林土壤甲烷汇的估算带来了一定的不确定性。在中国海南省吊罗山国家森林公园的热带森林土壤,采用激光光谱法测量了2016年9月至2018年9月逐月的土壤甲烷通量,并分析了其与周围环境因子的关系。结果表明:研究区土壤是甲烷的汇,山顶样地的年平均吸收量为0.95 kg CH4-C hm-2 a-1,山脚样地的年平均吸收量为1.93 kg CH4-C hm-2 a-1。干季(11月—次年4月)的甲烷吸收通量明显高于湿季(5—10月),占到全年甲烷吸收的68%。山顶样地年平均土壤湿度为19.2%,年内的波动较小(2.8%)。而山脚样地的年平均湿度相对较低,为12.7%,且年内波动大(5.4%)。土壤湿度是控制甲烷吸收最主要的环境因子,可以解释月际甲烷吸收变化的76%,甲烷吸收通量与土壤温度的相...  相似文献   

15.
Forest ecosystems assimilate more CO2 from the atmosphere and store more carbon in woody biomass than most nonforest ecosystems, indicating strong potential for afforestation to serve as a carbon management tool. However, converting grasslands to forests could affect ecosystem–atmosphere exchanges of other greenhouse gases, such as nitrous oxide and methane (CH4), effects that are rarely considered. Here, we show that afforestation on a well-aerated grassland in Siberia reduces soil CH4 uptake by a factor of 3 after 35 years of tree growth. The decline in CH4 oxidation was observed both in the field and in laboratory incubation studies under controlled environmental conditions, suggesting that not only physical but also biological factors are responsible for the observed effect. Using incubation experiments with 13CH4 and tracking 13C incorporation into bacterial phospholipid fatty acid (PLFA), we found that, at low CH4 concentrations, most of the 13C was incorporated into only two PLFAs, 18 : 1ω7 and 16 : 0. High CH4 concentration increased total 13C incorporation and the number of PLFA peaks that became labeled, suggesting that the microbial assemblage oxidizing CH4 shifts with ambient CH4 concentration. Forests and grasslands exhibited similar labeling profiles for the high-affinity methanotrophs, suggesting that largely the same general groups of methanotrophs were active in both ecosystems. Both PLFA concentration and labeling patterns indicate a threefold decline in the biomass of active methanotrophs due to afforestation, but little change in the methanotroph community. Because the grassland consumed CH4 at a rate five times higher than forest soils under laboratory conditions, we concluded that not only biomass but also cell-specific activity was higher in grassland than in afforested plots. While the decline in biomass of active methanotrophs can be explained by site preparation (plowing), inorganic N (especially NH4+) could be responsible for the change in cell-specific activity. Overall, the negative effect of afforestation of upland grassland on soil CH4 uptake can be largely explained by the reduction in biomass and to a lesser extent by reduced cell-specific activity of CH4-oxidizing bacteria.  相似文献   

16.
甲烷氧化菌是一类可以利用甲烷作为唯一碳源和能源的细菌,在全球变化和整个生态系统碳循环过程中起着重要的作用。近年来,对甲烷氧化菌的生理生态特征及其在自然湿地中的群落多样性研究取得了较大进展。在分类方面,疣微菌门、NC10门及两个丝状菌属甲烷氧化菌的发现使其分类体系得到了进一步的完善;在单加氧酶方面,发现甲烷氧化菌可以利用pM MO和sM MO两种酶进行氧化甲烷的第一步反应,Ⅱ型甲烷氧化菌中pM MO2的发现证实甲烷氧化菌可以利用这种酶氧化低浓度的甲烷;在底物利用方面,已经发现了越来越多的兼性营养型甲烷氧化菌,证实它们可以利用的底物比之前认为的更广泛,其中包括乙酸等含有碳碳键的化合物;在生存环境方面,能在不同温度、酸度和盐度的环境中生存的甲烷氧化菌不断被分离出来。全球自然湿地甲烷氧化菌群落多样性的研究目前主要集中在北半球高纬度的酸性泥炭湿地,Ⅱ型甲烷氧化菌Methylocystis、Methylocella和Methylocapsa是这类湿地主要的甲烷氧化菌类群,尤其以Methylocystis类群最为广泛,而Ⅰ型甲烷氧化菌尤其是Methylobacter在北极寒冷湿地中占优势。随着高通量测序时代的到来和新的分离技术的发展,对甲烷氧化菌的现有认识将面临更多的挑战和发展。  相似文献   

17.
Forest soils are thought to be an important sink for atmospheric methane. To evaluate methane consumption,14C-labeled methane was added to the headspace of intact soil cores collected from a mixed mesophytic forest and from a red spruce forest located in the central Appalachian Mountains. Both soils consumed the added methane at initially high rates that decreased as the methane mixing ratio of the air decreased. The mixed mesophytic forest soil consumed an average of 2 mg CH4 m–2 d–1 versus 1 mg CH, m–2 d–1 for the spruce forest soil. The addition of acetylene to the headspace completely suppressed methane consumption by the soils, suggesting that an aerobic methane-consuming microorganism mediated the process. At both forest sites, methane mixing ratios in soil air spaces were greater than that in the air overlying the soil surface, indicating that these soils had the ability to produce methane. Models of methane emission from forest soils to the atmosphere must represent methane flux as the balance between production and consumption of methane, which are controlled by very different factors  相似文献   

18.
Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4) oxidation in well‐aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in‐situ soil–atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand ‘maturity’ (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0–0.05, 0.05–0.10, 0.10–0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south‐eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks.  相似文献   

19.
Aerobic methanotrophs from the coastal thermal springs of Lake Baikal   总被引:1,自引:0,他引:1  
The number, activity, and diversity of aerobic methanotrophic bacteria in the sediments of three coastal thermal springs of Lake Baikal were analyzed. The average number of methanotrophs was 103–104 cells per 1 cm3 of sediment. The highest number of methanotrophs (108 cells/cm3 of silt) and the highest potential rate of methane uptake [7.7 nmol CH4/(cm3 day)] were revealed in sediments from the Sukhaya thermal spring. The methods of molecular ecology (DGGE, FISH, analysis of pmoA gene fragments) showed the predominance in most enrichment cultures of methanotrophs of type II, i.e., of the genera Methylocystis and Methylosinus. In only one enrichment culture (from the Sukhaya thermal spring), a type I methanotroph was revealed; its similarity to Methylococcus capsulatus Bath did not exceed 80%. These results demonstrate a widespread occurrence and high activity of the aerobic methanotrophic community in the coastal thermal springs of Lake Baikal.  相似文献   

20.
Oxidation of methane in boreal forest soils: a comparison of seven measures   总被引:8,自引:4,他引:8  
Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH4 oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH4) headspace, (b) estimating CH4 oxidation rates from soil CH4 distributions and (c)222Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 PPM CH4) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH4) headspaces, and (g) jar experiments on core sections involving tracer additions of14CH4. Short-term unamended chamber measurements,222Rn-calibrated flux measurements, and soil CH4 distributions show independently that the soils are capable of oxidizing atmospheric CH4 at rates ranging to < 2 mg m–2 d–1. Jar experiments with free-air headspaces and soil CH4 profiles show that CH4 oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH4 oxidation occurs at low (< 0.9 ppm) thresholds. The14CH4-amended jar experiments show the distribution of end products of CH4 oxidation; 60% is transformed to CO2 and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH4 oxidation and indicate potential CH4 oxidation rates as high as 867 mg m–2 d–1. Methane oxidation in moist soils modulates CH4 emission and can serve as a negative feedback on atmospheric CH4 increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号