首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myxoma virus (MV) ankyrin repeat, host range factor M-T5 has the ability to bind and activate cellular Akt, leading to permissive MV replication in a variety of diverse human cancer cell lines (G. Wang, J. W. Barrett, M. Stanford, S. J. Werden, J. B. Johnston, X. Gao, M. Sun, J. Q. Cheng, and G. McFadden, Proc. Natl. Acad. Sci. USA 103:4640-4645, 2006). The susceptibility of permissive human cancer cells to MV infection is directly correlated with the basal or induced levels of phosphorylated Akt. When M-T5 is deleted from MV, the knockout virus, vMyxT5KO, can no longer productively infect a subset of human cancer cells (designated type II) that exhibit little or no endogenous phosphorylated Akt. In searching for a host counterpart of M-T5, we noted sequence similarity of M-T5 to a recently identified ankyrin repeat cellular binding protein of Akt called PIKE-A. PIKE-A binds and activates the kinase activity of Akt in a GTP-dependent manner and promotes the invasiveness of human cancer cell lines. Here, we demonstrate that transfected PIKE-A is able to rescue the ability of vMyxT5KO to productively infect type II human cancer cells that were previously resistant to infection. Also, cancer cells that were completely nonpermissive for both wild-type and vMyxT5KO infection (called type III) were rendered fully permissive following ectopic expression of PIKE-A. We conclude that the MV M-T5 host range protein is functionally interchangeable with the host PIKE-A protein and that the activation of host Akt by either M-T5 or PIKE-A is critical for the permissiveness of human cancer cells for MV.  相似文献   

2.
3.
4.
5.
Lu Q  Yang P  Huang X  Hu W  Guo B  Wu F  Lin L  Kovács AL  Yu L  Zhang H 《Developmental cell》2011,21(2):343-357
PtdIns(3)P plays critical roles in the autophagy pathway. However, little is known about how PtdIns(3)P effectors act with autophagy proteins in autophagosome formation. Here we identified an essential autophagy gene in C.?elegans, epg-6, which encodes a WD40 repeat-containing protein with PtdIns(3)P-binding activity. EPG-6 directly interacts with ATG-2. epg-6 and atg-2 regulate progression of omegasomes to autophagosomes, and their loss of function?causes accumulation of enlarged early autophagic structures. Another WD40 repeat PtdIns(3)P effector, ATG-18, plays a distinct role in autophagosome formation. We also established the hierarchical relationship of autophagy genes in degradation of?protein aggregates and revealed that the UNC-51/Atg1 complex, EPG-8/Atg14, and binding of lipidated LGG-1 to protein aggregates are required for?omegasome formation. Our study demonstrates that autophagic PtdIns(3)P effectors play distinct roles in autophagosome formation and also provides?a framework for understanding the concerted action of autophagy genes in protein aggregate degradation.  相似文献   

6.
In studies on the specific migration of macromolecules across the nuclear envelope, a karyophilic protein was injected into the cytoplasm of cultured cells and its subsequent location in the cell was examined. Nucleoplasmin of frog nuclear protein was used for this experiment. When [125I]nucleoplasmin was introduced into the cytoplasm of mammalian cells (human and mouse) by red blood cell-mediated microinjection, it rapidly accumulated in the nucleus. When nucleoplasmin conjugated with [125I]IgG against chromosomal protein was introduced similarly, it also accumulated rapidly in the nucleus, and reacted with its antigen inside the nucleus. On the contrary, when IgG alone or IgG conjugated with BSA were introduced, they did not migrate from the cytoplasm into the nucleus. These findings imply that the migration of macromolecules from the cytoplasm to the nucleus does not depend only on their molecular size but also on a specific transport mechanism, and that karyophilic proteins may act as useful carriers in the transfer of exogenous proteins into the nucleus.  相似文献   

7.
Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the nuclear protein kinase family, which induces both p53- and CtBP-mediated apoptosis. Levels of HIPK2 were increased by UV irradiation and cisplatin treatment, thereby implying the degradation of HIPK2 in cells under normal conditions. Here, we indicate that HIPK2 is ubiquitinated and degraded by the WD40-repeat/SOCS box protein WSB-1, a process that is blocked under DNA damage conditions. Yeast two-hybrid screening was conducted to identify the proteins that interact with HIPK2. WSB-1, an E3 ubiquitin ligase, was characterized as an HIPK2-interacting protein. The coexpression of WSB-1 resulted in the degradation of HIPK2 via its C-terminal region. Domain analysis of WSB-1 showed that WD40-repeats and the SOCS box were required for its interaction with and degradation of HIPK2, respectively. In support of the degradation of HIPK2 by WSB-1, HIPK2 was polyubiquitinated by WSB-1 in vitro and in vivo. The knockdown of endogenous WSB-1 with the expression of short hairpin RNA against WSB-1 increases the stability of endogenous HIPK2 and resulted in the accumulation of HIPK2. The ubiquitination and degradation of HIPK2 by WSB-1 was inhibited completely via the administration of DNA damage reagents, including Adriamycin and cisplatin. These findings effectively illustrate the regulatory mechanisms by which HIPK2 is maintained at a low level, by WSB-1 in cells under normal conditions, and stabilized by genotoxic stresses.  相似文献   

8.
Protein phosphatase 2A (PP2A) is a multifunctional serine/threonine phosphatase that is critical to many cellular processes including development, neuronal signaling, cell cycle regulation, and viral transformation. PP2A has been implicated in Ca(2+)-dependent signaling pathways, but how PP2A is targeted to these pathways is not understood. We have identified two calmodulin (CaM)-binding proteins that form stable complexes with the PP2A A/C heterodimer and may represent a novel family of PP2A B-type subunits. These two proteins, striatin and S/G(2) nuclear autoantigen (SG2NA), are highly related WD40 repeat proteins of previously unknown function and distinct subcellular localizations. Striatin has been reported to associate with the post-synaptic densities of neurons, whereas SG2NA has been reported to be a nuclear protein expressed primarily during the S and G(2) phases of the cell cycle. We show that SG2NA, like striatin, binds to CaM in a Ca(2+)-dependent manner. In addition to CaM and PP2A, several unidentified proteins stably associate with the striatin-PP2A and SG2NA-PP2A complexes. Thus, one mechanism of targeting and organizing PP2A with components of Ca(2+)-dependent signaling pathways may be through the molecular scaffolding proteins striatin and SG2NA.  相似文献   

9.
10.
The 44-amino-acid E5 transforming protein of bovine papillomavirus can induce growth transformation of cultured rodent fibroblast cell lines. Previous studies revealed that efficient transformation of mouse C127 cells by the E5 protein required a central core of hydrophobic amino acids and several specific carboxyl-terminal amino acids. Although a randomly derived sequence of hydrophobic amino acids could functionally replace the wild-type hydrophobic core, most such sequences could not. We show here that the conserved glutamine at position 17 in the hydrophobic domain is also important for transformation and that insertion of the glutamine can rescue the transforming activity of many but not all otherwise defective mutants containing random hydrophobic sequences. However, a class of mutants was identified that transform efficiently even in the absence of glutamine, demonstrating that the presence of this amino acid is not absolutely required for efficient transformation. E5 proteins containing the glutamine appear to display increased homodimer formation compared with mutant proteins lacking the glutamine, but this amino acid has no apparent effect on protein stability.  相似文献   

11.
Striatin is an intracellular protein characterized by four protein-protein interaction domains, a caveolin-binding motif, a coiled-coil structure, a calmodulin-binding domain, and a WD repeat domain, suggesting that it is a signaling or a scaffold protein. Down-regulation of striatin, which is expressed in a few subsets of neurons, impairs the growth of dendrites as well as rat locomotor activity (Bartoli, M., Ternaux, J. P., Forni, C., Portalier, P., Salin, P., Amalric, M., and Monneron, A. (1999) J. Neurobiol. 40, 234-243). Zinedin, a "novel" protein described here, and SG2NA share with striatin identical protein-protein interaction domains and the same overall domain structure. A phylogenetic analysis supports the hypothesis that they constitute a multigenic family deriving from an ancestral gene. DNA probes and antibodies raised against specific domains of each protein showed that zinedin is mainly expressed in the central nervous system, whereas SG2NA, of more widespread occurrence, is mainly expressed in the brain and muscle. All three proteins are both cytosolic and membrane-bound. All three bind calmodulin in the presence of Ca(2+). In rat brain, SG2NA and striatin are generally not found in the same neurons. Both localize to the soma and dendrites, suggesting that they share a similar type of addressing and closely related functions.  相似文献   

12.
A new member of the WD repeat protein family, named GhWD40, was cloned from a near-isogenic line for glands in cotton. It has 2629 bp cDNA and a complete opening reading frame (ORF) of 1239 bp, containing the initial code (ATG) and terminal code (TAG); there is a 1061 bp non-coding sequence at the 5??-end, and a 329 bp non-coding sequence at the 3??-end, including the poly(A) sequence (accession number: JN714279). The predicted protein of the complete ORF comprised 412 amino acids with a calculated molecular mass of 47.1 kDa and an isoelectric point of 8.88. Protein domain scanning showed that the novel protein has five wd40 motifs and belongs to the WD40 family. From a search for GhWD40 cDNA and amino acid sequences in the database, it has 77% sequence identity and was 90% sequence positive with the WD-40 repeat protein from Trifolium pratense (accession number BAE71307.1), and 80% sequence identity and 89% sequence positivity with the ribosome biogenesis protein bop1 from Ricinus communis (accession number XP 002529002.1). We propose that GhWD40 may play the same role as bop1. In addition, expression of GhWD40 in near-isogenic lines 11 and 3 (with and without glands, respectively) was studied by quantitative RT-polymerase chain reaction, and the level in near-isogenic line 11 was higher than that in near-isogenic line 3, suggesting that GhWD40 may be related to gland formation.  相似文献   

13.
We have cloned a novel cDNA encoding a protein with eight WD repeat motifs and a domain similar to collagen. As the predicted size of the protein was 146 kDa, the gene was named WDC146. Here, we characterized the genomic structure, gene products, and the expression profiles. The human WDC146 gene had 22 exons spanning over 105 kb, and these exons were distributed in three islands intervened by two long introns of around 40 kb. A minimum promoter region was identified within a 0.5 kb 5'-upstream region of exon 1. WDC146 mRNA was most highly expressed in human testis on Northern blot analysis. In mouse tissues, the highest expression was also observed in testis. By in situ hybridization on rat tissues, WDC146 mRNA was detected preferentially in the pachytene stage of spermatocytes in testis, and weakly in white pulp/ marginal band of spleen and in cortex of thymus. WDC146 protein was found to be localized in nucleus. These data implied that WDC146 protein may play important roles in the mechanisms of cytodifferentiation and/or DNA recombination.  相似文献   

14.
The Hmx homeobox gene family appears to play a conserved role in CNS development in all animal species examined, and in higher vertebrates has an additional role in sensory organ development. Here, we show that murine Hmx2 and Hmx3 have both overlapping and distinct functions in the development of the inner ear's vestibular system, whereas their functions in the hypothalamic/pituitary axis of the CNS appear to be interchangeable. As in analogous knockin studies of Otx and En function, Drosophila Hmx can rescue conserved functions in the murine CNS. However, in contrast to Otx and En, Drosophila Hmx also rescues significant vertebrate-specific functions outside the CNS. Our work suggests that the evolution of the vertebrate inner ear may have involved (1) the redeployment of ancient Hmx activities to regulate the cell proliferation of structural components and (2) the acquisition of additional, vertebrate-specific Hmx activities to regulate the sensory epithelia.  相似文献   

15.
RNA location and modeling of a WD40 repeat domain within the vault   总被引:8,自引:0,他引:8       下载免费PDF全文
The vault complex is a ubiquitous 13-MDa ribonucleoprotein assembly, composed of three proteins (TEP1, 240 kDa; VPARP, 193 kDa; and MVP, 100 kDa) that are highly conserved in eukaryotes and an untranslated RNA (vRNA). The vault has been shown to affect multidrug resistance in cancer cells, and one particular component, MVP, is thought to play a role in the transport of drug from the nucleus. To locate the position of the vRNA, vaults were treated with RNases, and cryo-electron microscopy (cryo-EM) was performed on the resulting complexes. Using single-particle reconstruction techniques, 3,476 particle images were combined to generate a 22-A-resolution structure. Difference mapping between the RNase-treated vault and the previously calculated intact vault reconstructions reveals the vRNA to be at the ends of the vault caps. In this position, the vRNA may interact with both the interior and exterior environments of the vault. The finding of a 16-fold density ring at the top of the cap has allowed modeling of the WD40 repeat domain of the vault TEP1 protein within the cryo-EM vault density. Both stoichiometric considerations and the finding of higher resolution for the computationally selected and refined "barrel only" images indicate a possible symmetry mismatch between the barrel and the caps. The molecular architecture of the complex is emerging, with 96 copies of MVP composing the eightfold symmetric barrel, and the vRNA together with one copy of TEP1 and four predicted copies of VPARP comprising each cap.  相似文献   

16.
Strains of Saccharomyces cerevisiae bearing the ole1 mutation are defective in unsaturated fatty acid (UFA) synthesis and require UFAs for growth. A previously isolated yeast genomic fragment complementing the ole1 mutation has been sequenced and determined to encode the delta 9 fatty acid desaturase enzyme by comparison of primary amino acid sequence to the rat liver stearoyl-CoA desaturase. The OLE1 structural gene encodes a protein of 510 amino acids (251 hydrophobic) having an approximate molecular mass of 57.4 kDa. A 257-amino acid internal region of the yeast open reading frame aligns with and shows 36% identity and 60% similarity to the rat liver stearoyl-CoA desaturase protein. This comparison disclosed three short regions of high consecutive amino acid identity (greater than 70%) including one 11 of 12 perfect residue match. The predicted yeast enzyme contains at least four potential membrane-spanning regions and several shorter hydrophobic regions that align exactly with similar sequences in the rat liver protein. An ole1 gene-disrupted yeast strain was transformed with a yeast-rat chimeric gene consisting of the promoter region and N-terminal 27 codons of OLE1 fused to the rat desaturase coding sequence. Fusion gene transformants displayed near equivalent growth rates and modest lipid composition changes relative to wild type yeast control implying a significant conservation of delta 9 desaturase tertiary structure and efficient interaction between the rat desaturase and yeast cytochrome b5.  相似文献   

17.
Macroautophagy/autophagy is a conserved degradation process in eukaryotic cells involving the sequestration of proteins and organelles within double-membrane vesicles termed autophagosomes. In filamentous fungi, its main purposes are the regulation of starvation adaptation and developmental processes. In contrast to nonselective bulk autophagy, selective autophagy is characterized by cargo receptors, which bind specific cargos such as superfluous organelles, damaged or harmful proteins, or microbes, and target them for autophagic degradation. Herein, using the core autophagy protein ATG8 as bait, GFP-Trap analysis followed by liquid chromatography mass spectrometry (LC/MS) identified a putative homolog of the human autophagy cargo receptor NBR1 (NBR1, autophagy cargo receptor) in the filamentous ascomycete Sordaria macrospora (Sm). Fluorescence microscopy revealed that SmNBR1 colocalizes with SmATG8 at autophagosome-like structures and in the lumen of vacuoles. Delivery of SmNBR1 to the vacuoles requires SmATG8. Both proteins interact in an LC3 interacting region (LIR)-dependent manner. Deletion of Smnbr1 leads to impaired vegetative growth under starvation conditions and reduced sexual spore production under non-starvation conditions. The human NBR1 homolog partially rescues the phenotypic defects of the fungal Smnbr1 deletion mutant. The Smnbr1 mutant can neither use fatty acids as a sole carbon source nor form fruiting bodies under oxidative stress conditions. Fluorescence microscopy revealed that degradation of a peroxisomal reporter protein is impaired in the Smnbr1 deletion mutant. Thus, SmNBR1 is a cargo receptor for pexophagy in filamentous ascomycetes.  相似文献   

18.
A novel WD repeat protein component of the methylosome binds Sm proteins.   总被引:15,自引:0,他引:15  
We have recently described a large (20 S) protein arginine methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 (PRMT5) and the pICln protein. The methylosome functions to modify specific arginines to dimethylarginines in the arginine- and glycine-rich domains of several spliceosomal Sm proteins, and this modification targets these proteins to the survival of motor neurons (SMN) complex for assembly into small nuclear ribonucleoprotein (snRNP) core particles. Here, we describe a novel component of the methylosome, a 50-kilodalton WD repeat protein termed methylosome protein 50 (MEP50). We show that MEP50 is important for methylosome activity and binds to JBP1 and to a subset of Sm proteins. Because WD repeat proteins provide a platform for multiple protein interactions, MEP50 may function to mediate the interaction of multiple substrates with the methylosome. Interestingly, all of the known components of the methylosome bind Sm proteins, suggesting that in addition to producing properly methylated substrates for the SMN complex, the methylosome may be involved in Sm protein rearrangements or pre-assembly required for snRNP biogenesis.  相似文献   

19.
Collier S  Lee H  Burgess R  Adler P 《Genetics》2005,169(4):2035-2045
Much of our understanding of the genetic mechanisms that control planar cell polarity (PCP) in epithelia has derived from studies of the formation of polarized cell hairs during Drosophila wing development. The correct localization of an F-actin prehair to the distal vertex of the pupal wing cell has been shown to be dependent upon the polarized subcellular localization of Frizzled and other core PCP proteins. However, the core PCP proteins do not organize actin cytoskeletal polarity directly but require PCP effector proteins such as Fuzzy and Inturned to mediate this process. Here we describe the characterization of a new PCP effector gene, fritz, that encodes a novel but evolutionarily conserved coiled-coil WD40 protein. We show that the fritz gene product functions cell-autonomously downstream of the core PCP proteins to regulate both the location and the number of wing cell prehair initiation sites.  相似文献   

20.
A novel yeast gene, ELP2, is shown to encode the 90-kDa subunit of the Elongator complex and elongating RNA polymerase II holoenzyme. ELP2 encodes a protein with eight WD40 repeats, and cells lacking the gene display typical elp phenotypes, such as temperature and salt sensitivity. Generally, different combinations of double and triple ELP gene deletions cause the same phenotypes as single ELP1, ELP2, or ELP3 deletion, providing genetic evidence that the ELP gene products work together in a complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号