首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了实现激发子PebC1编码基因在毕赤酵母中的分泌表达,采用PCR方法从灰葡萄孢菌BC-4-2-2-1菌株中扩增获得激发子PebC1的编码序列,将其亚克隆至酵母分泌型表达载体pPIC9K中,以此片段构建了pPIC9K-pebC1重组表达质粒。重组表达质粒经Bgl Ⅱ线性化处理,电击转化至毕赤酵母宿主菌GS115,经MD、G418-YPD平板和PCR法筛选,获得了重组毕赤酵母菌GS115/pPIC9K-pebC1。用甲醇诱导重组酵母菌表达目标蛋白,发酵液经SDS-PAGE电泳分析,在约39 kDa处出现特异目标条带。Western blotting检测结果说明,重组表达产物具有良好的抗原性。生物活性检测表明,酵母重组表达蛋白PebC1能够诱导拟南芥和黄瓜幼苗对灰霉病的抗性。  相似文献   

2.
The modes of action of the antagonistic yeast Pichia anomala (strain K) have been studied; however, thus far, there has been no clear demonstration of the involvement of exo-beta-1,3-glucanase in determining the level of protection against Botrytis cinerea afforded by this biocontrol agent on apple. In the present study, the exo-beta-1,3-glucanase-encoding genes PAEXG1 and PAEXG2, previously sequenced from the strain K genome, were separately and sequentially disrupted. Transfer of the URA3-Blaster technique to strain K, allowing multiple use of URA3 marker gene, first was validated by efficient inactivation of the PaTRP1 gene and recovery of a double auxotrophic strain (uracil and tryptophan). The PAEXG1 and PAEXG2 genes then were inactivated separately and sequentially with the unique URA3 marker gene. The resulting mutant strains showed a significantly reduced efficiency of biocontrol of B. cinerea when applied to wounded apple fruit, the calculated protection level dropping from 71% (parental strain) to 8% (mutated strain) under some experimental conditions. This suggests that exo-beta-1,3-glucanases play a role in the biological control of B. cinerea on apple. Furthermore, biological control experiments carried out in this study underline the complexity of the host-antagonist-pathogen interaction. Two experimental parameters (yeast inoculum concentration and physiological stage of the fruit) were found to influence dramatically the protection level. Results also suggest that, under some conditions, the contribution of exo-beta-1,3-glucanase to biological control may be masked by other modes of action, such as competition.  相似文献   

3.
One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates.  相似文献   

4.
Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE mouse liver. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency, a 3-fold increase in the extraction of intact proteins, and up to a 30-fold increase in the number of nonredundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of nonredundant proteins identified in the FFPE tissue was nearly identical to that of matched fresh-frozen tissue.  相似文献   

5.
The yeast Candida oleophila (strain O) presents a high level of protective activity against Botrytis cinerea (gray mold) on postharvest apples. The cDNA-AFLP technique allows the comparison of mRNA populations extracted from cells grown in different conditions. In order to isolate yeast genes potentially involved in biological control properties, that technique was applied on strain O cells growing on apple wounds. The biological control properties of 8 C. oleophila strains and strain O were assessed in order to compare the gene expression of a non antagonistic strain against gene expression of strain O. In the absence of a non-antagonistic strain, an other comparison model was designed. It was based on the growth of strain O in different in situ conditions: strain O applied on apple wounds (O), strain O applied on apple wounds in presence of B. cinerea (B) and B. cinerea alone on apple wounds (F). A recovering technique, based on the washing of cells in the wound and a RNA extraction method followed by a DNase treatment were optimised before cDNA-AFLP application. Thirteen primer pairs were used. Their application resulted in an average of 54 and 55 bands for O and B respectively whereas no bands were observed for F. Among these bands, 8 were expressed more intensely in presence of the pathogen (1.1% of the fragments).  相似文献   

6.
The activities of four fungal polygalacturonases (endo-PGI,endo-PGII, exo-PGI, exo-PGII), detected when Botrytis cinereawas grown on immature fruits of red raspberry (Rubus idaeus),were fractionated into soluble and wall-bound fractions. Westernblots and plate-trapped antigen ELISA showed that endo-PGI andendo-PGII were most abundant in the cell wall-bound fractionsof the host. Immuno-inhibition studies using a polyclonal antiserumagainst polygalacturonase-inhibiting protein (PGIP), purifiedfrom immature raspberry fruits, showed that the low level offungal PG activity detected in fractions containing endo-PGIwas due to the presence of PGIP. When a purified preparationof endo-PGI and endo-PGII from B. cinerea was allowed to reactin vitro with either a crude host cell wall preparation, orone which had previously been treated to remove cell wall-boundproteins, both endo-PG isozymes had a greater binding capacitytowards the former wall preparation. Endo-PGI and endo-PGIIalso had an affinity for fungal cell walls. Exo-PGI and exo-PGIIbound to both fungal and host cell walls. Greater quantitiesof fungal endo-PGs were detected by ELISA in fruits previouslyfrozen and thawed (‘freeze-thawed’) and inoculated,than in fresh inoculated fruit. This result paralleled the extentof fungal growth in these tissues as assessed by chitin assayand suggests that the resistance shown by raspberries is dependenton continual replacement of inhibitory substances or inducedresistance mechanisms. Key words: Polygalacturonase-inhibiting protein, Rubus idaeus, red raspberry, Botrytis cinerea, pectinases  相似文献   

7.
It has been confirmed that stress plays an important role in the induction and development of cardiovascular diseases, but its mechanism and molecular basis remain unknown. In the present study, a myocardial injury model induced by restraint stress was established in rat. To screen for the related proteins involved in stress-induced myocardial injury, proteomic techniques based on 2-DE and mass spectrometry were used. In our results, ten proteins were found to be altered. The expression of eight of these proteins was increased after restraint stress, including cardiac myosin heavy chain, dihydrolipoamide succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial aldehyde dehydrogenase, H+-transporting ATP synthase, albumin, and apolipoprotein A-I precursor. The expression of uncoupling protein 3 (UCP3) and mitochondrial aconitase was decreased. Most of the proteins were related to energy metabolism. Further research indicated that UCP3 may mediate the myocardial cell response induced by restraint stress.  相似文献   

8.
We have recently shown that a group of structurally diverse gold compounds are highly cytotoxic toward a panel of 36 human tumor cell lines through a variety of biochemical mechanisms. A classic proteomic approach is exploited here to gain deeper insight into those mechanisms. This investigation is focused on Auoxo6, a novel binuclear gold(III) complex, and auranofin, a clinically established gold(I) antiarthritic drug. First, the 72-h cytotoxicity profiles of Auoxo6 and auranofin were determined against A2780 human ovarian carcinoma cells. Subsequently, protein extraction from gold-treated A2780 cells sensitive to cisplatin and 2D gel electrophoresis separation were carried out according to established procedures. Notably, both metallodrugs caused relatively modest changes in protein expression in comparison with controls as only 11 out of approximately 1,300 monitored spots showed appreciable quantitative changes. Very remarkably, six altered proteins were in common between the two treatments. Eight altered proteins were identified by mass spectrometry; among them was ezrin, a protein associated with the cytoskeleton and involved in apoptosis. Interestingly, two altered proteins, i.e., peroxiredoxins 1 and 6, are known to play crucial roles in the cell redox metabolism. Increased cleavage of heterogeneous ribonucleoprotein H was also evidenced, consistent with caspase 3 activation. Overall, the results of the present proteomic study point out that the mode of action of Auoxo6 is strictly related to that of auranofin, that the induced changes in protein expression are limited and selective, that both gold compounds trigger caspase 3 activation and apoptosis, and that a few affected proteins are primarily involved in cell redox homeostasis.  相似文献   

9.
NADPH oxidases (Nox) are major enzymatic producer of reactive oxygen species (ROS). In fungi these multi‐enzyme complexes are involved in sexual differentiation and pathogenicity. However, in contrast to mammalian systems, the composition and recruitment of the fungal Nox complexes are unresolved. Here we introduce a new Nox component, the membrane protein NoxD in the grey mold fungus Botrytis cinerea. It has high homology to the ER protein Pro41 from Sordaria macrospora, similar functions to the catalytic Nox subunit BcNoxA in differentiation and pathogenicity, and shows similarities to phagocytic p22phox. BcNoxA and BcNoxD interact with each other. Both proteins are involved in pathogenicity, fusion of conidial anastomosis tubes (CAT) and formation of sclerotia and conidia. These data support our earlier view based on localization studies, for an ER‐related function of the Nox complex. We present the first evidence that some functions of the BcNoxA complex are indeed linked to the ER, while others clearly require export from the ER.  相似文献   

10.
Six endopolygalacturonases from Botrytis cinerea (BcPG1 to BcPG6) as well as mutated forms of BcPG1 and BcPG2 were expressed transiently in leaves of Nicotiana benthamiana using agroinfiltration. Expression of BcPG1, BcPG2, BcPG4, BcPG5, and mutant BcPG1-D203A caused symptoms, whereas BcPG3, BcPG6, and mutant BcPG2-D192A caused no symptoms. Expression of BcPG2 caused the most severe symptoms, including wilting and necrosis. BcPG2 previously has been shown to be essential for B. cinerea virulence. The in vivo effect of this enzyme and the inhibition by a polygalacturonase-inhibiting protein (PGIP) was examined by coexpressing Bcpg2 and the Vvpgipl gene from Vitis vinifera in N. benthamiana. Coinfiltration resulted in a substantial reduction of the symptoms inflicted by the activity of BcPG2 in planta, as evidenced by quantifying the variable chlorophyll fluorescence yield. In vitro, however, no interaction between pure VvPGIP1 and pure BcPG2 was detected. Specifically, VvPGIP1 neither inhibited BcPG2 activity nor altered the degradation profile of polygalacturonic acid by BcPG2. Furthermore, using surface plasmon resonance technology, no physical interaction between VvPGIP1 and BcPG2 was detected in vitro. The data suggest that the in planta environment provided a context to support the interaction between BcPG2 and VvPGIP1, leading to a reduction in symptom development, whereas neither of the in vitro assays detected any interaction between these proteins.  相似文献   

11.
A fast at-line method was developed for the identification of ACE inhibiting (ACEI) peptides in protein hydrolysates. The method consists of activity measurements of fractions collected from a two-dimensional HPLC fractionation of the peptide mixture followed by MS identification of the peptides in the inhibiting fractions. The inhibition assay is based on the inhibiting effect of ACEI peptides on the hydrolytic scission of the substrate Hippuric acid-His-Leu (HHL) during the ACE-catalysed hydrolysis reaction. A fast LC method was developed for the quantification of Hippuric acid (H) and Hippuric acid-Histidine-Leucine (HHL), allowing a large number of fractions to be analysed within a reasonable time period. The method is sensitive and uses only standard laboratory equipment. The limit of detection is 0.34 microM for the known ACEI peptide IPP. This is sufficiently sensitive for the identification of only moderately active peptides and/or ACEI peptides present at low concentrations. The relative standard deviation of the inhibition assay was 12% measured over a time period of 2 months. The IC50 value of IPP measured with the assay was 5.6 microM, which is comparable to the values of 5 microM and 5.15 microM reported in literature for the standard Matsui method. The assay was successfully applied in the identification of ACEI peptides in enzymatically hydrolysed caseinate samples. Two new, not earlier published ACEI peptides were identified; MAP (beta-casein f102-104) and ITP (alpha-s2-casein f119-121) with IC50 values of 3.8 microM and 50 microM, respectively.  相似文献   

12.
Recently we investigated the influence of classical and emerging antibiotics on the proteome of Bacillus subtilis including in our studies actinonin, a potent novel inhibitor of peptide deformylase. The protein synthesis pattern under actinonin treatment changed so dramatically that a direct comparison to the control pattern was impossible. Dual channel imaging revealed that actinonin treatment caused the majority of newly synthesised proteins to accumulate in spots different from the ones usually observed, indicating a more acidic isoelectric point. Two strategies were used to investigate the nature of the charge shift. In the first place, protein patterns of a conditional peptide deformylase mutant under nonrepressing and repressing conditions were compared. Secondly, several protein pairs excised from two-dimensional (2-D) gels of the peptide deformylase mutant, exponentially growing untreated wild-type and the actinonin treated wild-type were investigated with matrix-assisted laser desorption/ionization and electrospray ionization (ESI) time of flight mass spectrometry (TOF MS) for the existence of N-terminal formylation. Under nonrepressing conditions the mutant protein pattern resembled that of the wild-type. The loss of peptide deformylase activity under repressing conditions led to the same pI shift observed for actinonin treatment in the wild-type. Quadrupole TOF-MS on 11 protein pairs proved that the remaining N-terminal formyl residue was indeed responsible for the charge shift. Eight of these protein pairs were also present on 2-D gels of exponentially growing B. subtilis, where the more acidic, still formylated protein species represented the smaller parts.  相似文献   

13.
Cytoplasmic soluble proteins from ungerminated conidia of Botrytis cinerea exhibited cutinase activity, while cell wall binding proteins lacked this activity. Cutinase activity in proteins extracted from cell walls and cytoplasm of ungerminated conidia of Botrytis cinerea was determined using p-nitrophenyl butyrate (PNB) and TLC analysis of products derived from hydrolysis of [3H]cutin. Treatment of conidia with indoxyl acetate, a substrate indicative of non-specific esterase and cutinase activity, also gave a positive reaction in the cytoplasm of ungerminated conidia. The possible role of a putative constitutive cutinase in the cytoplasm of conidia in the early stages of infection of plants by B. cinerea is discussed.  相似文献   

14.
15.
Oligogalacturonides (OGs) are endogenous elicitors of defense responses released after partial degradation of pectin in the plant cell wall. We have previously shown that, in Arabidopsis (Arabidopsis thaliana), OGs induce the expression of PHYTOALEXIN DEFICIENT3 (PAD3) and increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of signaling pathways mediated by jasmonate, salicylic acid, and ethylene. Here, we illustrate that the rapid induction of the expression of a variety of genes by OGs is also independent of salicylic acid, ethylene, and jasmonate. OGs elicit a robust extracellular oxidative burst that is generated by the NADPH oxidase AtrbohD. This burst is not required for the expression of OG-responsive genes or for OG-induced resistance to B. cinerea, whereas callose accumulation requires a functional AtrbohD. OG-induced resistance to B. cinerea is also unaffected in powdery mildew resistant4, despite the fact that callose accumulation was almost abolished in this mutant. These results indicate that the OG-induced oxidative burst is not required for the activation of defense responses effective against B. cinerea, leaving open the question of the role of reactive oxygen species in elicitor-mediated defense.  相似文献   

16.
Wan Li K  Chen N  Klemmer P  Koopmans F  Karupothula R  Smit AB 《Proteomics》2012,12(15-16):2428-2432
A typical high-sensitivity antibody affinity purification-mass spectrometry experiment easily identifies hundreds of protein interactors. However, most of these are non-valid resulting from multiple causes other than interaction with the bait protein. To discriminate true interactors from off-target recognition, we propose to differentially include an (peptide) antigen during the antibody incubation in the immuno-precipitation experiment. This contrasts the specific antibody-bait protein interactions, versus all other off-target protein interactions. To exemplify the power of the approach, we studied the DMXL2 interactome. From the initial six immuno-precipitations, we identified about 600 proteins. When filtering for interactors present in all anti-DMXL2 antibody immuno-precipitation experiments, absent in the bead controls, and competed off by the peptide antigen, this hit list is reduced to ten proteins, including known and novel interactors of DMXL2. Together, our approach enables the use of a wide range of available antibodies in large-scale protein interaction proteomics, while gaining specificity of the interactions.  相似文献   

17.
Chronological events associated with the degradation of Botrytis cinerea by a strain of Trichoderma harzianum selected for superior biocontrol ability were studied using ultrastructure and cytochemical investigations in an attempt to define the relative roles of antibiosis and parasitism in the antagonistic process. The first ultrastructural changes were observed 12 h before contact between the organisms, and were characterized by punctuated invaginations of the Botrytis plasmalemma. These reactions were followed by a gradual retraction of the plasmalemma, disorganization of the cytoplasm, loss of turgor pressure and cell death within 48 h of contact between hyphae of the interacting fungi. The first evidence of penetration of B. cinerea by T. harzianum was recorded 72 h after contact. This penetration was apparently mediated by either mechanical pressure or localized wall digestion at points of entry, as there was no clear evidence of chitinolytic degradation of the B. cinerea cell wall, as determined by cytochemical labelling of chitin with a lectin-gold conjugate. However, after 10 days there was clear indication of chitin degradation, based on the random and reduced presence of gold particles over the cell wall of B. cinerea. These results suggest that the strain of T. harzianum antagonized first and foremost by antibiosis, leading to cell death, followed by degradation of the cell by means of chitinolytic enzymes. The production of antibiotics may, therefore, be more important than that of chitinolytic enzymes in conferring superior biocontrol properties to T. harzianum.  相似文献   

18.
Abstract Myxococcus xanthus cells move over surfaces by gliding motility. The frz signal transduction system is used to control the reversal frequency, and thus the overall direction of movement of M. xanthus cells. We analyzed the behavior of wild-type and frz mutant cells in response to prey bacteria ( Escherichia coli ). Wild-type cells of M. xanthus did not respond to microcolonies of E. coli until they made physical contact. Cells which penetrated a colony remained in the colony until all of the prey cells were digested. Cells of frz mutants also penetrated E. coli microcolonies and digested some of the E. coli cells, but they invariably abandoned the microcolony leaving their food source behind. These observations illustrate the importance of the frz system of signal transduction for the feeding behavior of M. xanthus cells.  相似文献   

19.
20.
Speciation is characterized by the development of reproductive isolating barriers between diverging groups. Intrinsic post-zygotic barriers of the type envisioned by Bateson, Dobzhansky, and Muller are deleterious epistatic interactions among loci that reduce hybrid fitness, leading to reproductive isolation. The first formal population genetic model of the development of these barriers was published by Orr in 1995, and here we develop a more general model of this process by incorporating finite protein-protein interaction networks, which reduce the probability of deleterious interactions in vivo. Our model shows that the development of deleterious interactions is limited by the density of the protein-protein interaction network. We have confirmed our analytical predictions of the number of possible interactions given the number of allele substitutions by using simulations on the Saccharomyces cerevisiae protein-protein interaction network. These results allow us to define the rate at which deleterious interactions are expected to form, and hence the speciation rate, for any protein-protein interaction network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号