首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we determined the critical stages and the key factors of mortality for Planococcus citri (Hemiptera: Pseudococcidae) in Brazilian coffee plantations using a life table to understand the role of natural biological control on its population. Predators, parasitoids, rainfall, sunlight, physiological disturbances and fungal diseases were collectively responsible for 98.79% in the total mortality of P. citri. Predators belonging to the Chrysopidae, Syrphidae, Dolichopodidae and Coccinellidae families were the most important mortality factors in the early developmental stages of P. citri (i.e. eggs and 1st and 2nd instar nymphs), whereas predators belonging to the Coccinellidae and Chrysopidae families were the most important mortality factors for the last instars (i.e. 3rd instars and adults) for P. citri. The generalist predators Harmonia axyridis, Chrysoperla genanigra and Chrysoperla externa were the key mortality factors for P. citri. The third nymph stage was considered the critical life stage (i.e. the life stage that most influences population size). Our results show that generalist predators and climatic factors are important sources of natural mortality of P. citri governing the population dynamics of this pest in the field.  相似文献   

2.
Effects of prey density, prey instar, and patch size on the development of the predatory mosquito larva, Toxorhynchites towadensis, were investigated in the laboratory. Survivors of T. towadensis showed different developmental patterns in relation to prey age structure. All predatory larvae in containers with only second instar prey developed into the third instar. However, in several containers with fourth instar prey, mortality of predators was observed. During the third instar, no predatory larva died, but both prey density and prey instar significantly affected the survival of predators during their fourth instar. Large prey size promoted large predator adults, and predatory larvae which grew up in small surface containers responded by developing to large sizes than those in large containers. Larval developmental time of the predators differed in each treatment. During first and second instars, faster predator development was observed in containers with small surface areas and containing young prey individuals. However, when development was enhanced by the presence of old prey individuals, no surface effect was observed. The fastest predator development was observed with prey of mixed instars and high density. This study suggests that a small surface container containing prey of mixed instars and high density is suitable for development of predators.  相似文献   

3.
Key mortality factors due to natural biological control of the melonworm, Diaphania hyalinata, were investigated. Mortality factors were quantified in cucumber plots and used to develop a life table. The highest mortality of the melonworm took place during the egg stage (90.08% mortality) when the most important mortality factor was the predator Paratrechina sp. (Hymenoptera: Formicidae). However, the critical mortality stage of this insect pest was the fifth larval instar and its key mortality factor was parasitism by tachinid flies (aff. Amazohoughia, Eucelatoria sp. and aff. Lixophaga).  相似文献   

4.
Koichi Tanaka 《Oecologia》1992,90(4):597-602
Summary Stage-specific mortality rates and mortality factors for the web-building spiderAgelena limbata, which is suggested to be food-limited, were studied, and the relationship between body size of spiders and survivorship for instar 3 to adults was examined. The mortality rate of the egg sac stage including eggs, deutova (prenymphal stage), and overwintering instar 1 nymphs was low. The low mortality of this stage was partly due to maternal care that reduced the mortality caused by predation and/or abiotic factors. From emergence of instar 1 nymphs from egg sacs to reproduction, the stagespecific mortality rates were almost constant, 32–47%, and the time-specific mortality rates were also constant. These results suggest a Deevey (1947) type II survivorship curve inA. limbata, in contrast to other reports on the wandering or burrowing spiders which suggested type III curves. Important mortality factors for nymphs and adults were parasitism by an ichneumonid wasp and predation by spiders. There were great variations in body size (carapace width) ofA. limbata in the field. Smaller individuals survived at a lower rate to the next stage than larger individuals. This tendency was clearer for the population living under poorer prey availability.A. limbata was unlikely to starve to death in the field because every stage ofA. limbata could survive starvation for a long time in the laboratory, 22–65 days on average. I suggest that the size-dependent survivorship of this spider is associated with vulnerability of smaller individuals to parasitism and predation.  相似文献   

5.
Aristolochic acids (AAs) are thought to be responsible for the chemical protection of the aposematic larvae Battus polydamas (L.) (Papilionidae: Troidini) against predators. These compounds are sequestered by larvae from their Aristolochia (Aristolochiaceae) host plants. Studying the role of the chemical protection of the second and fifth instars of B. polydamas against potential predators, we found that the consumption of larvae by the carpenter ant Camponotus crassus Mayr and young chicks Gallus gallus domesticus was dependent on larval developmental stage. Second instars were more preyed upon than fifth instars; however, the assassin bug Montina confusa Stål was not deterred by chemical defences of the fifth instar B. polydamas. Laboratory bioassays with carpenter ants and young chicks using palatable baits topically treated with a pure commercial mixture of AAs I and AAs II in concentrations up to 100 times those previously found in B. polydamas larvae showed no activity. Similar results were found in field bioassays, where palatable baits treated as above were exposed to the guild of predators that attack B. polydamas larvae and were also consumed irrespective of the commercial AA concentration used. These results suggest that the mixture of AAs I and AAs II have no defensive role against predators, at least against those investigated in the present work. Other compounds present in Aristolochia host plants such as O-glycosylated AAs; benzylisoquinoline alkaloids; and mono-, sesqui-, di-, and triterpenes, which can be sequestered by Troidini, could act as deterrents against predators.  相似文献   

6.
1. This study examined biological characteristics of sexual and asexual strains of the parasitoid wasp, Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). 2. Strains were reared in different instar hosts (the black bean aphid, Aphis fabae Scopoli) under identical environmental conditions (21 °C, 65–75% RH, and LD 16:8 h). 3. Results showed that the second instar of the aphid is the most suitable growth stage for both strains, as the wasps that emerged from the second instar hosts were larger, more fecund, and had larger egg size. Trade‐offs between the fitness components of the parasitoid were clearer when the parasitoids were reared in suboptimal instars. 4. According to the results, sexual females emerged around 1 day earlier and lived around 0.5 day less than asexual females. Also, sexual females emerged with a lower initial egg load, although these wasps tend to have larger eggs than asexual females. Asexual females may enjoy greater longevity and higher developmental plasticity which suggests a higher degree of synchronization with pest population dynamism. 5. The results suggest that sexual wasps, in contrast to asexual wasps, invest more in egg size than in egg load. This study suggests strain‐specific adaptations of L. fabarum to different instars of the black bean aphid by which the allocation of nutritional resources to various functions differs between strains. 6. Furthermore, differences in life history traits between strains can greatly influence the population dynamics of each strain, and hence their effectiveness in suppressing pest populations.  相似文献   

7.
The solitary endoparasitoid Aenasius vexans Kerrich (Hymenoptera: Encyrtidae) is used for augmentative releases against the cassava mealybug, Phenacoccus herreni Cox & Williams (Sternorrhyncha: Pseudococcidae), an important pest on cassava in South America. In light of the need for large numbers of high quality females, experiments were conducted on host stage suitability and sex allocation. In choice and no-choice experiments, individual female wasps were offered second and third instar, as well as adult, hosts. During the first five days after emergence, the wasps showed a steady increase in the number of hosts they successfully parasitised per day, but the respective secondary sex ratio for each instar remained constant. Parasitism was highest for third instar hosts in no-choice tests, while in choice tests parasitism was highest in both third instars and adults. The later the developmental stage of the host at oviposition, the faster the parasitoids developed and emerged, and for each host stage, the development time of males was shorter than for females. The sex ratio of the wasps emerging from hosts that were parasitised as second instars was strongly male-biased, while the apparently preferred later stages yielded significantly more females than males. Female and male A. vexans emerging from hosts parasitised at the third instar were significantly larger than for the other stages. This may explain the preference for the third instar as well as the female-biased sex ratio, as size is usually positively correlated with higher fitness, especially in females. The results suggest that third instar hosts are the most suitable for rearing high numbers of large females.  相似文献   

8.
Prey detect their predators through predator signals and cues and, consequently, respond with anti‐predatory behaviours to inhibit the action of their aggressors. Lepidopterans can intercept signals emitted by predators and may defend themselves through chemical, morphological or behavioural responses. In this study, we investigated the effect of acoustic stimuli of different predators on defensive behaviour of gregarious caterpillars. Our results demonstrated that Hylesia nigricans (Lepidoptera, Saturniidae) caterpillars alter their behaviour (i.e. abruptly raising the head) in response to the acoustic stimulus of the predators (i.e. predation risk signals from birds and wasps). The magnitude of this response depended on predator identity and caterpillar body size. Larger caterpillars responded more strongly to predatory stimuli than smaller caterpillars. However, regardless of the size of the caterpillars, they responded more strongly to the stimuli of wasps. In addition, we identified that H. nigricans caterpillars emit ultrasonic noise after detecting the stimuli of the predators – this noise seems to function as an alert about the risk of predation during the early stages of development (second and fifth instars). The duration of ultrasonic emission (i.e. milliseconds) increases with the number of repetitions of the stimuli (i.e. wing‐beat sounds of the wasps and insectivorous birds). These results provide novel information about predation risk in interactions among caterpillars and their predators, and indicate possible communication among invertebrates mediated by the risk of predation.  相似文献   

9.
Understanding how the biotic and abiotic factors influence pest-population dynamics is important to implement sound pest management strategies in biological control and integrated pest management (IPM) programmes. Coccus viridis (Green) is an important indirect pest of coffee plants, but very little has been done to understand the factors that contribute most for its biological control in the field. In the present study, we examined the critical life stage and the key factors associated with the mortality of C. viridis in coffee plantations in Brazil by conducting field-based life table studies. Predators, parasitoids, fungi, infested leaf abscission and rainfall were collectively responsible for a total C. viridis mortality of 96.08%. Predation by coccinellids was the key factor governing the mortality of C. viridis. The parasitism of early instars by parasitoids was the second most important factor contributing to C. viridis mortality. Unlike the parasitoids, the fungus Lecanicillium lecanii caused mortality of scales in more advanced life stages. The abscission of infested leaves from the trees, and rainfall also contributed to the mortality of C. viridis. The nymph stage was considered the critical stage for mortality of C. viridis in the field. The results suggest that predators (Coccinellidae) are the most important factors controlling C. viridis, and thus should be the target of conservation measures in coffee plantations infested with this pest.  相似文献   

10.
《Journal of Asia》2020,23(1):60-66
The lepidopteran insect pests have significant importance in vegetable production. The present study was performed to investigate the baseline studies about the assessment of feeding and consumption potential, utilization indices and losses promises of leafworm, Spodoptera litura (Fab.) on Okra. The data regarding feeding potential, food utilization and consumption indices as well as losses of different larval instars were recorded and subjected to appropriate statistical analysis. The results showed that, in the beginning, the approximate digestibility of various instars was increase, e.g. third instar (51.36%–64.03%), fourth instar (63.42%–69.45%) and fifth instar (70.25%–76.10%). However, after a certain period, the digestibility was decreased and efficiency to convert the ingested food into biomass varied significantly. The consumption index values increased with an increase in time but the consumption and growth rate was declined of fourth instar larvae. The ingestion and digestion increased of third (10.01–13.06, 8.32–11.91 mg), fourth (11.27–17.28, 10.96–14.03 mg) and fifth (12.60–19.40, 11.93–15.28 mg) larval instars. The corrected weight of consumed leaves increased with a gain in body weight. However, in the third instar, a decline was observed on the last day of feeding. Maximum leaf area was consumed by fifth instar larvae (44.66 cm2) followed by fourth (35.41 cm2) and third (27.98 cm2) instars. In conclusion, all the dependent parameters, including food utilization potential, consumption indices and losses were higher for fifth instar larvae than others. These results emphasized the re-establishment of fundamental (economic threshold level: ETL, economic injury level: EIL) integrated pest management concepts.  相似文献   

11.
Soybean is one of most consumed and produced grains in the world, and Anticarsia gemmatalis is a pest that causes great damage to this crop due to severe defoliation during its larval phase. Plants have mechanisms that lead to the inhibition of proteases in the intestine of these herbivores, hampering their development. Understanding this complex protease inhibitor is important for pest control. The objective of this study was to evaluate the enzymatic profiles of the intestinal proteases of the soybean caterpillar at different instars. For this, the proteolytic profile of the gut in the third, fourth, and fifth instars were analyzed. Irreversible inhibitors of proteases were separately incubated with A. gemmatalis enzyme extracts at the third, fourth, and fifth instar to assess the contribution of these proteases to total proteolytic activity. The enzymatic extracts were also evaluated with specific substrates to confirm changes in the specific activities of trypsin-like, chymotrypsin-like, and cysteine proteases at different instars. The results showed that the protease profile of A. gemmatalis gut changes throughout its larval development. The activity of cysteine proteases was more intense in the first instar. On the contrary, the serine proteases showed major activities in the late stages of the larval phase. Zymogram analysis and protein identification by liquid chromatography–mass spectrometry indicated serine protease as the main protease class expressed in the fifth instar. These results may shift the focus from the rational development of the protease inhibitor to A. gemmatalis and other Lepidoptera, as the expression of major proteases is not constant.  相似文献   

12.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

13.
双斑恩蚜小蜂和桨角蚜小蜂是华南地区烟粉虱的两种优势种寄生蜂。本文研究了两种寄生蜂对不同龄期烟粉虱寄主的产卵选择特性。结果表明:两种寄生蜂均可寄生烟粉虱的1~4龄若虫。当只有1个龄期的烟粉虱若虫存在时,双斑恩蚜小蜂更多地寄生3龄和4龄若虫,较少寄生1龄和2龄若虫;而桨角蚜小蜂则更多地寄生3龄和2龄若虫,较少寄生1龄和4龄若虫。在4个龄期若虫同时存在时,双斑恩蚜小蜂会明显增加对3龄和4龄若虫的产卵寄生,降低对1龄和2龄若虫的寄生;而桨角蚜小蜂则增加对2龄和3龄若虫的寄生,减少对1龄和4龄若虫的寄生。寄主植物的差异不影响这二种蚜小蜂对各龄期烟粉虱若虫的产卵选择倾向。结果提示,烟粉虱若虫3龄和4龄是双斑恩蚜小蜂最适宜的寄主,而桨角蚜小蜂最适宜的寄主是烟粉虱2龄和3龄若虫。  相似文献   

14.
Summary An indirect effects is defined here as a reduction in prey survivorship as a consequence of a reduction in growth rate of prey due to the presence of a predator that alters prey behavior. A method for partitioning the direct and indirect effects of predators on prey survivorship indicated that predatory wasps (Polistes sp.:. Vespidae) had both direct and indirect negative effects on survivorship of buckmoth caterpillars (Hemileuca lucina: Saturniidae). In a field experiment, the direct and indirect effects together accounted for 61% of the mortality of the caterpillars. A third of this reduction in survivorship due to the wasps was attributed to an indirect effect, due to the decreased growth rate of the caterpillars that moved into the interior of the hostplant to escape from the wasps. In contrast, in another field experiment, although predatory stinkbugs (Podisus maculiventris: Hemiptera) contributed to 56% of the mortality of buckeye caterpillars (Junonia coenia: Nymphalidae), the indirect effect of stinkbugs on buckeye caterpillars only accounted for 2% of the reduction in survivorship of these caterpillars. These differences in the indirect effect are discussed in particular relative to the behavior of predators and prey, ratio of predator to prey sizes, and morphology of the hostplants.  相似文献   

15.
双斑恩蚜小蜂和桨角蚜小蜂是华南地区烟粉虱的两种优势种寄生蜂。本文研究了两种寄生蜂对不同龄期烟粉虱寄主的产卵选择特性。结果表明: 两种寄生蜂均可寄生烟粉虱的1~4龄若虫。当只有1个龄期的烟粉虱若虫存在时,双斑恩蚜小蜂更多地寄生3龄和4龄若虫,较少寄生1龄和2龄若虫;而桨角蚜小蜂则更多地寄生3龄和2龄若虫,较少寄生1龄和4龄若虫。在4个龄期若虫同时存在时,双斑恩蚜小蜂会明显增加对3龄和4龄若虫的产卵寄生,降低对1龄和2龄若虫的寄生;而桨角蚜小蜂则增加对2龄和3龄若虫的寄生,减少对1龄和4龄若虫的寄生。寄主植物的差异不影响这二种蚜小蜂对各龄期烟粉虱若虫的产卵选择倾向。结果提示,烟粉虱若虫3龄和4龄是双斑恩蚜小蜂最适宜的寄主,而桨角蚜小蜂最适宜的寄主是烟粉虱2龄和3龄若虫。  相似文献   

16.
Abstract:  The larval parasitoid, Campoplex dubitator (Hym.,: Ichneumonidae), is under consideration as an agent for classical biological control of cherry bark tortrix (CBT), Enarmonia formosana (Lep.,: Tortricidae), in North America. A comprehensive risk analysis of the candidate agent will require prosperous cultures of both the pest and its parasitoid. We present a rearing method for small-scale production of both species using a bean-based artificial diet, with additional information on the reproductive biology of C. dubitator . Based on estimated survivorship probabilities, a CBT egg had a 70% chance of developing completely to the adult stage under this system. The success of parasitism, however, was very dependent on the instar of the CBT host larva at the time of oviposition. All parasitised first instar larvae died shortly after the attack, rendering them unsuitable for oviposition, while 50% of parasitised second instar larvae died prematurely. In contrast, early mortality was 15–30% for larvae parasitised in the third to fifth instars. Regardless of the instar at oviposition, approximately 90% of the surviving hosts yielded parasitoids, showing a high acceptance by C. dubitator of second to fifth instars for oviposition.  相似文献   

17.
The robber fly Mallophora ruficauda Weidemann (Diptera: Asilidae) is an important pest of apiculture in the Pampas of Argentina. As adults, they prey on honey bees and other insects, whereas the larvae are ectoparasitoids of Scarabaeidae grubs. Females of M. ruficauda lay eggs in grassland where the larvae drop to the ground after being wind‐dispersed and burrow underground searching for their hosts. A temporal asynchrony exists between the appearance of the parasitoid larvae and the host, with the parasitoid appearing earlier than the host. The present study investigates whether a strategy of synchronization with the host exists in M. ruficauda and determines which of the larval instars are responsible for it. Survival patterns and duration of the immature stages of the parasitoid are investigated to determine whether there is a modulation in the development at any time that could reduce the asynchrony. Experiments are carried out to determine the survival and duration of free‐living larval stadia in the absence of cues associated with the host. It is established that the first instar is capable of moulting to the second instar without feeding and in the absence of any cues related to the host, a unique event for parasitoids. Also, the first instar of M. ruficauda moults to the second stage within a narrow temporal window, and the second instar never moults in the absence of the host. After parasitizing a host, the second instar has the longest lifespan and is the most variable with respect to survival compared with the rest of the instars. All larval instars, except for those in the last (fifth) stadium, have a similar rate of mortality to that of second‐instar larvae. Additionally, it is established that the host is killed during the fourth (parasitoid) stadium and that the first‐ and fifth‐larval instars develop independently of the host. Finally, possible mechanisms that could aid in compensating for the asynchrony between the parasitoid and the host, promoting the host–parasitoid encounter, are discussed.  相似文献   

18.
Apophua simplicipes (Cresson) (Hymenoptera: Ichneumonidae) is a common parasitoid of the oblique banded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) in organically managed apple orchards in the southern interior of British Columbia, Canada. The biological characteristics of a laboratory colony of A. simplicipes were studied. When held at 15 and 25°C and provided with honey water, individual females survived an average of 60.6±6.1 and 29.8±4.7 days, oviposited 196.7±50.7 and 326.6±51.3 eggs and parasitized a total of 163.4±40.4 and 229.4±35.8 hosts, respectively. Females oviposited into first through fourth instar oblique banded leafrollers, with significantly more parasitism occurring in the first two instars compared to the third and fourth instars. No parasitoid larvae survived past the first larval stage in parasitized fourth instar hosts. Apophua simplicipes did not parasitize larvae of three-lined leafroller, Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) which is sympatric with oblique banded leafrollers in orchards in the southern interior of British Columbia. Female predation and host feeding from wounds on early instars of both leafroller species was observed under laboratory conditions. In addition, early instar hosts exited diet feeding sites in response to the probing activity of the ovipositing wasps. A similar escape reaction in the orchard may cause a leafroller larva to move away from its feeding site, making it more vulnerable to predation or movement off the tree. Apophua simplicipes larvae emerged from fifth and sixth instar hosts. Parasitized oblique banded leafroller hosts consumed significantly less meridic diet than unparasitized female larvae from fifth instar through to parasitoid emergence or leafroller pupation. Our laboratory results suggest that A. simplicipes may reduce field populations of oblique banded leafroller and decrease pest feeding damage.  相似文献   

19.
The citrus leafminer, Phyllocnistis citrella, is a pest native to Southeast Asia which threatened the citrus industry in the Mediterranean region upon its introduction in 1993. Immediately afterward, a classical biological control program was implemented in Spain. The exotic parasitoid Citrostichus phyllocnistoides was the only introduced parasitoid to become established. In 2006, data on both the incidence of P. citrella and the impact of its natural enemies were collected following the same protocols used in 1997–1999 when C. phyllocnistoides was not yet present. C. phyllocnistoides constituted 99.4% of the parasitoids collected in 2006 corresponding to a decrease in the incidence of P. citrella from 3.2–5.1 to 1.8–2.4 mines per leaf in 1997–1999 and 2006, respectively. Mortality caused by natural enemies on P. citrella in 2006 was 93.3% (18.0% parasitism, 40.8% feeding punctures and 34.5% predation). C. phyllocnistoides, which preferentially parasitizes P. citrella second instar larvae, has displaced most of the indigenous parasitoids that moved onto P. citrella mainly parasitizing third instar larvae, upon its introduction. Because C. phyllocnistoides is an idiobiont parasitoid and preferentially parasitizes P. citrella second instars, this stage has become dominant in the orchards. The shift in the relative abundance of P. citrella larvae has prompted generalist predators to prey mostly on second instars and has contributed to the displacement of the native non-specific parasitoids, which principally utilize third instars, from the system. Both indigenous predators and the introduced parasitoid are key players in the natural regulation of P. citrella.  相似文献   

20.
The tomato borer, Tuta absoluta (Meyrick) (Lep.: Gelechiidae), is an important tomato pest native to South America, which appeared in eastern Spain at the end of 2006. Prey suitability of T. absoluta eggs and larval instars was examined under laboratory conditions to evaluate whether two indigenous predators, Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis Reuter (Hem.: Miridae), can adapt to this invasive pest. Both predators preyed actively on T. absoluta eggs and all larval stages, although they preferred first‐instar larvae. Our results demonstrate that both mirids can adapt to this invasive pest, contributing to their value as biological control agents in tomato crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号