首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Grain quality of rye is often negatively affected by sprouting - a complex trait with a poorly understood genetic background and strong interaction with weather conditions. The aim of this report was to detect the main quantitative trait loci (QTLs) underlying preharvest sprouting resistance in rye, measured as a percentage of sprouted kernels after spraying spikes with water for 7 days. Simple and composite interval mapping, carried out in 3 environments on 94 F3 and F4 families of the cross between sprouting-susceptible (541) and sprouting-resistant (Ot1-3) inbred lines, revealed 5 QTLs located on chromosome arms 1RL, 2RL, 5RL, 6RL and 7RL. The significance of these QTLs was additionally proved by disruptive selection carried out on 5000 F2 plants of the 541 x Ot1-3 cross and continued to the F5 generation of recombinant inbred lines (RIL), which strongly affected allele frequencies at linked marker loci. Resistance to preharvest sprouting showed dominant inheritance except for QPhs.uas-7R.1 (recessive) and QPhs.uas-1R.1 (additive). Results of the present study suggest that introgression of 4-5 QTLs, identified in line Ot1-3, should substantially reduce sprouting risk in rye varieties.  相似文献   

2.
Hydroxamates (HX) are major secondary metabolites synthesized by rye and are responsible for some of the unique properties of this cereal, including good tolerance of biotic and abiotic stresses and allelopathy. Recently, five genes encoding enzymes taking part in HX biosynthesis have been sequenced and characterized, which was the starting point to undertake the present study. Association analysis of the content of six HX–HBOA (2-hydroxy-1,4-benzoxazin-3-one), GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one glucoside), DIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one), GDIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one glucoside), DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) in the above-ground parts of plants and roots was performed on a population consisting of 102 and 121 diverse inbred lines, in 2013 and 2014, respectively. Altogether, 48 single nucleotide polymorphisms (SNPs) were found to be associated with the content of at least one HX: 20 SNPs were associated with HX synthesized in the above-ground parts of rye plants (AG-SNP), and 28 were associated with HX synthesized in the roots (R-SNP). The highest number of SNPs was present in genes ScBx1 (9) and ScBx5 (11). The majority of SNPs were affected by environmental factors, except for two: ScBx4_1702 associated with GDIBOA and MBOA contents, and ScBx5_1105 associated with HBOA content in roots.  相似文献   

3.
4.
This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.  相似文献   

5.

Key message

A comparative genetics approach allowed to precisely determine the map position of the restorer gene Rfp3 in rye and revealed that Rfp3 and the restorer gene Rfm1 in barley reside at different positions in a syntenic 4RL/6HS segment.

Abstract

Cytoplasmic male sterility (CMS) is a reliable and striking genetic mechanism for hybrid seed production. Breeding of CMS-based hybrids in cereals requires the use of effective restorer genes as an indispensable pre-requisite. We report on the fine mapping of a restorer gene for the Pampa cytoplasm in winter rye that has been tapped from the Iranian primitive rye population Altevogt 14160. For this purpose, we have mapped 41 gene-derived markers to a 38.8 cM segment in the distal part of the long arm of chromosome 4R, which carries the restorer gene. Male fertility restoration was comprehensively analyzed in progenies of crosses between a male-sterile tester genotype and 21 recombinant as well as six non-recombinant BC4S2 lines. This approach allowed us to validate the position of this restorer gene, which we have designated Rfp3, on chromosome 4RL. Rfp3 was mapped within a 2.5 cM interval and cosegregated with the EST-derived marker c28385. The gene-derived conserved ortholog set (COS) markers enabled us to investigate the orthology of restorer genes originating from different genetic resources of rye as well as barley. The observed localization of Rfp3 and Rfm1 in a syntenic 4RL/6HS segment asks for further efforts towards cloning of both restorer genes as an option to study the mechanisms of male sterility and fertility restoration in cereals.
  相似文献   

6.
A study was made of the expression and inheritance of the sy11 mutation, which alters homologous chromosome synapsis in meiotic prophase I of rye. The abnormal phenotype proved to be determined by a recessive allele of a single sy11 gene. Univalents and multivalents were observed in homozygotes for the mutant allele. Analysis of the synaptonemal complex revealed a combination of homologous and nonhomologous synapsis in the mutant. The nonhomologous synapsis frequency significantly decreased in the course of meiotic prophase I in the mutant. The number of chiasmata per bivalent in metaphase I was 1.1 ± 0.01 versus 1.8 ± 0.01 in wild-type plants, and the number of univalents was 2.7 ± 0.06 versus 0.5 ± 0.05 in wild-type plants. As a result, a broad range of abnormalities was observed at subsequent stages of meiosis and led to the formation of defective microspores. Mutant plants were semisterile.  相似文献   

7.
Amplified fragment length polymorphism (AFLP) analysis of 24 in vitro regenerated rye plants was performed in order to evaluate the somaclonal variation rate in this species and to identify rye genomic regions where mutations are preferentially promoted by in vitro culture processes. Regenerated plants were obtained from cell lines derived from immature embryos and plants were regenerated by somatic embryogenesis. Twenty-three regenerants showed variation when compared against sibling plants obtained from the same cell line. A total number of 887 AFLP markers were scored, and 8.8% identified the same polymorphism in plants obtained independently from different cell lines, revealing putative mutational hot spots. Using controlled crossings and analysis of the corresponding progenies, we were able to verify the genetic stability in the next generation for only five of these polymorphisms. The nucleotide sequence of the AFLP amplicon of four of the polymorphic markers was obtained, but only the sequence of two markers was clearly identified in the databases. The sequence of marker A1-303 was identified as part of a tandemly repeated sequence, the 120-bp family, which is located at telomeric regions and is widely distributed among rye chromosomes. The marker A5-375 showed high similarity with regions of Angela retrotransposons.  相似文献   

8.
9.
Ergot (Claviceps purpurea [Fr.] Tul.) is a serious disease of rye (Secale cereale L.) and it adversely affects the quality of grain. The present investigation was undertaken to study genotypic variability among full-sib families (FSF) of five open-pollinated (OP) winter rye populations of highly diverse origin, namely Dankovskie Selekcyine (Poland), Charkovskaja (Ukraine), NEM4 (Russia), Halo and Carokurz, both from Germany. About 50 FSF were developed at random in each population, and the FSF of each population were evaluated in separate but adjacent experiments conducted in four environments under artificial inoculation. A mixture of conidia of C. purpurea isolates was sprayed thrice during the flowering period. The materials were manually harvested at yellow-ripe stage. Resistance trait recorded was disease severity, i.e. percent ergot sclerotia in grain by weight. Mean ergot severity ranged from 2.29 to 4.08% for the five populations across environments. Significant genotypic variation (P < 0.01) due to FSF and FSF × environment interaction was observed within each population. Genotypic variation within all populations was higher than that among five populations. All populations showed high estimates of heritability (0.72–0.89). The study indicated that the evaluated OP populations are rich reservoirs of genetic variation that should also be used in hybrid breeding. Recurrent selection to further improve ergot resistance should be successful.  相似文献   

10.
Ma R  Guo YD  Pulli S 《Plant cell reports》2003,22(5):320-327
A method for somatic embryogenesis and fertile green plant regeneration from suspension cell-derived protoplasts of rye (Secale cereale L. cv. Auvinen) was developed. Fast-growing and friable embryogenic calli with a high regeneration capacity were induced from immature rye inflorescences using modified MS medium. These friable embryogenic calli were used for suspension culture initiation in liquid AA medium. A high yield of protoplasts was obtained from suspension cell clumps after 3–5 days of subculture. Isolated protoplasts were cultured in KM8p medium. The frequency of protoplast cell divisions and colony formations in liquid culture medium were similar to those on agarose-solidified medium. Compact embryogenic calli were developed from protoplast-derived microcalli in growth medium mMS. Approximately 7% of the transferred embryogenic calli produced green shoots on N6 regeneration medium. Of 33 green plants, 28 were fertile with normal flowering and seed set. The ratio of green and albino plantlets was 1:4. Rye protoplast-derived green plants showed normal diploid characters as determined by flow cytometer analysis and chromosome counting.Abbreviations 2,4-D 2,4-Dichorophenoxyacetic acid - FDA Fluorescein diacetate - FW Fresh weight - GA3 Gibberellic acid - Kinetin 6-Furfurylaminopurine - IAA Indole-3-acetic acid - NAA -Naphthaleneacetic acid  相似文献   

11.
The genetic integrity of six accessions represented by 14 sub-populations of the open-pollinating species rye (Secale cereale L.) was investigated. Seeds available from a herbarium collection (first regeneration) and from the cold store (most recent regeneration) were multiplied two to fourteen times and fingerprinted using microsatellite markers. Four accessions had significantly different allele frequencies. These were multiplied seven to thirteen times. Nearly 50% of the alleles discovered in the original samples were not found in the material present in the cold store. However alleles were detected in the most recently propagated sub-populations, that were not observed in the investigated plants of the original one. The change in allele frequencies is a continuous process. Reasons for the occurrence of genetic changes and consequences for managing open pollinating species maintained in ex situ genebanks are discussed.Communicated by G. Wenzel  相似文献   

12.
Genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis) led to the identification of two dominant resistance genes, Pr1 and Pr2. Both genes proved to be effective against a local leaf-rust population as well as a subset of single-pustule isolates (SPIs) the latter of which comprised SPIs with very high virulence complexity. Resistance conferred by Pr1 and Pr2 was expressed in detached-leaf tests of seedlings as well as in field tests of adult plants. Molecular marker analysis allowed us to map Pr1 in the proximal part of rye chromosome 6RL, whereas Pr2 was assigned to the distal part of chromosome 7RL. These results are discussed in view of homoeology relationships among Triticeae. A proposal is submitted for the designation of resistance genes to rye leaf rust which would avoid interference with existing gene-symboling in respect to wheat leaf-rust resistances introgressed from rye into wheat or triticale.  相似文献   

13.
The plants of winter rye variety Rostockie grown in nutrient solution prepared according to Marschner and Romheld (1983) were stressed at shooting stage with different zinc (ZnCl2) concentrations of 0, 20, 200 and 400 mgXdm−3 during 10 days at pH = 4.5. The control plants were grown continuously at pH = 7, without Zn2+. The roots of all plants were titrated with 0.1 molXdm−3 NaOH in 1 molXdm−3 NaCl solution with a rate 0.01 ml/min using auto-titrator Titrino 702 (Metrohm). The amount of the base consumed between pH 3 and 10 was recorded with a step of 0.1 pH unit. From the titration data root surface charge was characterized. Roots grown at pH = 4.5 without Zn2+ addition, had apparently the same charge properties as the control roots. Under 200 and 400 mgXdm−3 of zinc addition, variable charge, Q, and the cation exchange capacity, CEC, of the roots significantly decreased as did the fractions of surface acidic functional groups of strong and medium acidity i.e. the groups having apparent surface dissociation constants, Kapp, between 10−3.5 and 10−5.5. For 20 mgXdm−3 zinc stress the fraction of weaker surface groups (surface dissociation constants around 10−6.5) decreased also. The surface charge density, SCD, of roots decreased under the Zn stress.  相似文献   

14.
In this paper we review the earliest Secale (rye) records, both pollen and macroremains, from the eastern Baltic region (northeast Poland, Lithuania, Latvia, Estonia and Finland) in order to understand the processes evident in the beginnings of rye cultivation. By taking note of the abundance of recovered Secale grains and pollen in relation to other cereals found in published archaeobotanical data, we try to understand when rye began to be used regionally as a staple food. The clarification of the timing of Secale in the East Baltic, that had social and economic implications, is of particular importance. In this publication we also present a radiocarbon date directly derived from dating a Secale grain from a Roman period hillfort in Lithuania. The date obtained constitutes the earliest record of Secale in the eastern Baltic region, showing that rye cultivation traditions and concomitant innovations in agricultural technology started there much earlier than previously suggested.  相似文献   

15.
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome “bouquet” was impaired, and all chromosomes were univalent in meiotic metaphase I in 96.8% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase I. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with 14 univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei8-10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.  相似文献   

16.
The conventional way to drive modifications in old forest tree seed orchards is to establish progeny trials involving each parent tree and then evaluate its contribution to the performance of the progeny by estimating its general and specific combining ability (GCA and SCA). In this work, we successfully applied an alternative parent selection tactic based on paternity testing of superior offspring derived from a hybrid seed orchard established with a single Eucalyptus grandis seed parents and six E. urophylla pollen parents. A battery of 14 microsatellite markers was used to carry out parentage tests of 256 progeny individuals including two independent samples of selected trees and one control unselected sample, all derived from 6-year-old forest stands in eastern Brazil. Paternity determination was carried out for all progeny individuals by a sequential paternity exclusion procedure. Exclusion was declared only when the obligatory paternal allele in the progeny tree was not present in the alleged parent tree for at least four independent markers to avoid false exclusions due to mutation or null alleles. After maternity checks to identify seed mixtures and selfed individuals, the paternity tests revealed that approximately 29% of the offspring was sired by pollen parents outside the orchard. No selfed progeny were found in the selected samples. Three pollen parents were found to have sired essentially all of the offspring in the samples of selected and non-selected progeny individuals. One of these three parents sired significantly more selected progeny than unselected ones (P0.0002 in a Fisher exact test). Based on these results, low-reproductive-successful parents were culled from the orchard, and management procedures were adopted to minimize external pollen contamination. A significant difference (P<0.01) in mean annual increment was observed between forest stands produced with seed from the orchard before and after selection of parents and revitalization of the orchard. An average realized gain of 24.3% in volume growth was obtained from the selection of parents as measured in forest stands at age 2–4 years. The marker-assisted tree-breeding tactic presented herein efficiently identified top parents in a seed orchard and resulted in an improved seed variety. It should be applicable for rapidly improving the output quality of seed orchards, especially when an emergency demand for improved seed is faced by the breeder.Communicated by D.B. Neale  相似文献   

17.
Three dominant resistance genes, Pr3, Pr4, and Pr5, were identified by genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis). Each of the three genes confers resistance to a broad scale of single-pustule isolates (SPIs), but differences could be observed for specific Pr gene/SPI combinations. Resistance conferred by the three genes was effective in both detached-leaf tests carried out on seedlings and in field tests of adult plants. Molecular marker analysis mapped Pr3 to the centromeric region of rye chromosome arm 1RS, whereas Pr4 and Pr5 were assigned to the centromeric region of 1RL. Chromosomal localization and reaction patterns to specific SPIs provide evidence that the three Pr genes represent distinct and novel leaf-rust resistance genes in rye. The contributions of these genes to resistance breeding in rye and wheat are discussed.The authors dedicate this paper to Prof. Dr. H.H. Geiger, University of Hohenheim, on the occasion of his 65th birthday.An erratum to this article can be found at  相似文献   

18.
The Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene. In the population developed from the 541×2020LM intercross, numerous markers tightly linked with the restorer gene were identified. This group contained 91 DArT markers and three SCARs additionally analyzed in the study. All these markers were mapped in the distance not exceeding 6 cM from the gene of interest. In the second mapping population (541×Ot1-3 intercross), only 9 DArT markers located closely to the Rfc1 gene were identified. Five of these DArT markers were polymorphic in both populations.  相似文献   

19.
Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library’s suitability for investigating Al tolerance genes. The library provides 6 × genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Cytoplasmatic male sterility (CMS) is the basis for commercial hybrid seed production of rye. Nuclear restorer genes are indispensable for a complete restoration of fertility of the CMS lines. The drawbacks of current European restorer lines require the utilisation of new genetic resources that have been recently detected in an Iranian primitive rye population (IRAN IX) and an Argentinean landrace (Pico Gentario). The introgression of these effective restorer genes (Rfp1 and Rfp2, respectively) into breeding material can be facilitated by marker-assisted selection. Using two F(2) populations based on crosses between the non-restorer inbred line Lo6 and the restorer IRAN IX, as well as Pico Gentario, RAPDs and AFLPs were screened and led to a closely linked marker set for each of these genes. The conversion of the closest markers into fragment-specific sequence-characterised amplified region (SCAR) markers resulted in flanking ranges of 2.9 cM (Rfp1) and 5.2 cM (Rfp2). The application of these markers in backcross programmes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号