首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

2.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

3.
Dysfunctional high density lipoprotein (HDL) is implicated in the pathogenesis of cardiovascular disease, but the underlying pathways remain poorly understood. One potential mechanism involves covalent modification by reactive carbonyls of apolipoprotein A-I (apoA-I), the major HDL protein. We therefore determined whether carbonyls resulting from lipid peroxidation (malondialdehyde (MDA) and hydroxynonenal) or carbohydrate oxidation (glycolaldehyde, glyoxal, and methylglyoxal) covalently modify lipid-free apoA-I and inhibit its ability to promote cellular cholesterol efflux by the ABCA1 pathway. MDA markedly impaired the ABCA1 activity of apoA-I. In striking contrast, none of the other four carbonyls were effective. Liquid chromatography-electrospray ionization-tandem mass spectrometry of MDA-modified apoA-I revealed that Lys residues at specific sites had been modified. The chief adducts were MDA-Lys and a Lys-MDA-Lys cross-link. Lys residues in the C terminus of apoA-I were targeted for cross-linking in high yield, and this process may hinder the interaction of apoA-I with lipids and ABCA1, two key steps in reverse cholesterol transport. Moreover, levels of MDA-protein adducts were elevated in HDL isolated from human atherosclerotic lesions, suggesting that lipid peroxidation might render HDL dysfunctional in vivo. Taken together, our observations indicate that MDA damages apoA-I by a pathway that generates lysine adducts at specific sites on the protein. Such damage may facilitate the formation of macrophage foam cells by impairing cholesterol efflux by the ABCA1 pathway.  相似文献   

4.
High density lipoprotein (HDL) isolated from human atherosclerotic lesions and the blood of patients with established coronary artery disease contains elevated levels of 3-chlorotyrosine. Myeloperoxidase (MPO) is the only known source of 3-chlorotyrosine in vivo, indicating that MPO oxidizes HDL in humans. We previously reported that Tyr-192 is the major site that is chlorinated in apolipoprotein A-I (apoA-I), the chief protein in HDL, and that chlorinated apoA-I loses its ability to promote cholesterol efflux from cells by the ATP-binding cassette transporter A1 (ABCA1) pathway. However, the pathways that promote the chlorination of specific Tyr residues in apoA-I are controversial, and the mechanism for MPO-mediated loss of ABCA1-dependent cholesterol efflux of apoA-I is unclear. Using site-directed mutagenesis, we now demonstrate that lysine residues direct tyrosine chlorination in apoA-I. Importantly, methionine residues inhibit chlorination, indicating that they can act as local, protein-bound antioxidants. Moreover, we observed near normal cholesterol efflux activity when Tyr-192 of apoA-I was mutated to Phe and the oxidized protein was incubated with methionine sulfoxide reductase. Thus, a combination of Tyr-192 chlorination and methionine oxidation is necessary for depriving apoA-I of its ABCA1-dependent cholesterol transport activity. Our observations suggest that biologically significant oxidative damage of apoA-I involves modification of a limited number of specific amino acids, raising the feasibility of producing oxidation-resistant forms of apoA-I that have enhanced anti-atherogenic activity in vivo.  相似文献   

5.
Protein oxidation by phagocytic white blood cells is implicated in tissue injury during inflammation. One important target might be high-density lipoprotein (HDL), which protects against atherosclerosis by removing excess cholesterol from artery wall macrophages. In the human artery wall, cholesterol-laden macrophages are a rich source of myeloperoxidase (MPO), which uses hydrogen peroxide for oxidative reactions in the extracellular milieu. Levels of two characteristic products of MPO-chlorotyrosine and nitrotyrosine-are markedly elevated in HDL from human atherosclerotic lesions. Here, we describe how MPO-dependent chlorination impairs the ability of apolipoprotein A-I (apoA-I), HDL's major protein, to transport cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. Faulty interactions between apoA-I and ABCA1 are involved. Tandem mass spectrometry and investigations of mutated forms of apoA-I demonstrate that tyrosine residues in apoA-I are chlorinated in a site-specific manner by chloramine intermediates on suitably juxtaposed lysine residues. Plasma HDL isolated from subjects with coronary artery disease (CAD) also contains higher levels of chlorinated and nitrated tyrosine residues than HDL from healthy subjects. Thus, the presence of chlorinated HDL might serve as a marker of CAD risk. Because HDL damaged by MPO in vitro becomes dysfunctional, inhibiting MPO in vivo might be cardioprotective.  相似文献   

6.
High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.  相似文献   

7.
Oxidized HDL has been proposed to play a key role in atherogenesis. A wide range of reactive intermediates oxidizes methionine residues to methionine sulfoxide (MetO) in apolipoprotein A-I (apoA-I), the major HDL protein. These reactive species include those produced by myeloperoxidase, an enzyme implicated in atherogenesis. The aim of the present study was to develop a sensitive and specific ELISA for detecting MetO residues in HDL. We therefore immunized mice with HPLC-purified human apoA-I containing MetO(86) and MetO(112) (termed apoA-I(+32)) to generate a monoclonal antibody termed MOA-I. An ELISA using MOA-I detected lipid-free apoA-I(+32), apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Detection was concentration dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radical or metal ions, or LDL and methionine-containing proteins other than apoA-I modified by 2e-oxidants. Because the ELISA we have developed specifically detects apoA-I containing MetO in HDL and plasma, it should provide a useful tool for investigating the relationship between oxidized HDL and coronary artery disease.  相似文献   

8.
Despite the ability of acrolein to damage proteins, factors governing its reactivity with the ε-amino group of lysine are poorly understood. We used a small 26-mer α-helical peptide (ATI-5261) to evaluate the influence of acidic glutamate (E) residues on site-specific lysine modification by acrolein and if this targeting played a major role in inhibiting the cholesterol efflux activity of the peptide. Exposure of ATI-5261 to acrolein resulted in N-(3-formyl-3,4-dehydropiperidino) (FDP)-lysine adducts at positions 5 and 25 and led to a concentration-dependent reduction in cholesterol efflux activity (55 ± 7 and 83 ± 3% decrease with 5:1 and 20:1 acrolein:peptide molar ratios, respectively). Amino acid substitution (K → R) experiments and mass spectrometry revealed neither K5 nor K25 was preferentially modified by acrolein, despite the location of K5 within a putative EXXK motif. Moreover, both lysine residues remained equally reactive when the lipidated peptide was exposed to acrolein. In contrast, placement of EXXK in the center of ATI-5261 resulted in site-specific modification of lysine. The latter was dependent on glutamate, thus establishing that acidic residues facilitate lysine modification and form the molecular basis of the EXXK motif. Preferential targeting of lysine, however, failed to augment the inhibitory effect of the aldehyde. Overall, the inhibitory effects of acrolein on cholesterol efflux activity were largely dependent on the number of lysine residue modifications and cross-linking of α-helical strands that restricted dissociation of the peptide to active forms.  相似文献   

9.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

10.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

11.
Oxidative damage by myeloperoxidase (MPO) has been proposed to deprive HDL of its cardioprotective effects. In vitro studies reveal that MPO chlorinates and nitrates specific tyrosine residues of apoA-I, the major HDL protein. After Tyr-192 is chlorinated, apoA-I is less able to promote cholesterol efflux by the ABCA1 pathway. To investigate the potential role of this pathway in vivo, we used tandem mass spectrometry with selected reaction monitoring to quantify the regiospecific oxidation of apoA-I. This approach demonstrated that Tyr-192 is the major chlorination site in apoA-I in both plasma and lesion HDL of humans. We also found that Tyr-192 is the major nitration site in apoA-I of circulating HDL but that Tyr-18 is the major site in lesion HDL. Levels of 3-nitrotyrosine strongly correlated with levels of 3-chlorotyrosine in lesion HDL, and Tyr-18 of apoA-I was the major nitration site in HDL exposed to MPO in vitro, suggesting that MPO is the major pathway for chlorination and nitration of HDL in human atherosclerotic tissue. These observations may have implications for treating cardiovascular disease, because recombinant apoA-I is under investigation as a therapeutic agent and mutant forms of apoA-I that resist oxidation might be more cardioprotective than the native form.  相似文献   

12.
For more than two decades, there has been continuing evidence of lipid oxidation playing a central role in atherogenesis. The oxidation hypothesis of atherogenesis has evolved to focus on specific proinflammatory oxidized phospholipids that result from the oxidation of LDL phospholipids containing arachidonic acid and that are recognized by the innate immune system in animals and humans. These oxidized phospholipids are largely generated by potent oxidants produced by the lipoxygenase and myeloperoxidase pathways. The failure of antioxidant vitamins to influence clinical outcomes may have many explanations, including the inability of vitamin E to prevent the formation of these oxidized phospholipids and other lipid oxidation products of the myeloperoxidase pathway. Preliminary data suggest that the oxidation hypothesis of atherogenesis and the reverse cholesterol transport hypothesis of atherogenesis may have a common biological basis. The levels of specific oxidized lipids in plasma and lipoproteins, the levels of antibodies to these lipids, and the inflammatory/anti-inflammatory properties of HDL may be useful markers of susceptibility to atherogenesis. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides may both promote a reduction in oxidized lipids and enhance reverse cholesterol transport and therefore may have therapeutic potential.  相似文献   

13.
Apolipoprotein A-I: structure-function relationships   总被引:5,自引:0,他引:5  
The inverse relationship between high density lipoprotein (HDL) plasma levels and coronary heart disease has been attributed to the role that HDL and its major constituent, apolipoprotein A-I (apoA-I), play in reverse cholesterol transport (RCT). The efficiency of RCT depends on the specific ability of apoA-I to promote cellular cholesterol efflux, bind lipids, activate lecithin:cholesterol acyltransferase (LCAT), and form mature HDL that interact with specific receptors and lipid transfer proteins. From the intensive analysis of apoA-I secondary structure has emerged our current understanding of its different classes of amphipathic alpha-helices, which control lipid-binding specificity. The main challenge now is to define apoA-I tertiary structure in its lipid-free and lipid-bound forms. Two models are considered for discoidal lipoproteins formed by association of two apoA-I with phospholipids. In the first or picket fence model, each apoA-I wraps around the disc with antiparallel adjacent alpha-helices and with little intermolecular interactions. In the second or belt model, two antiparallel apoA-I are paired by their C-terminal alpha-helices, wrap around the lipoprotein, and are stabilized by multiple intermolecular interactions. While recent evidence supports the belt model, other models, including hybrid models, cannot be excluded. ApoA-I alpha-helices control lipid binding and association with varying levels of lipids. The N-terminal helix 44-65 and the C-terminal helix 210-241 are recognized as important for the initial association with lipids. In the central domain, helix 100-121 and, to a lesser extent, helix 122-143, are also very important for lipid binding and the formation of mature HDL, whereas helices between residues 144 and 186 contribute little. The LCAT activation domain has now been clearly assigned to helix 144-165 with secondary contribution by helix 166-186. The lower lipid binding affinity of the region 144-186 may be important to the activation mechanism allowing displacement of these apoA-I helices by LCAT and presentation of the lipid substrates. No specific sequence has been found that affects diffusional efflux to lipid-bound apoA-I. In contrast, the C-terminal helices, known to be important for lipid binding and maintenance of HDL in circulation, are also involved in the interaction of lipid-free apoA-I with macrophages and specific lipid efflux. While much progress has been made, other aspects of apoA-I structure-function relationships still need to be studied, particularly its lipoprotein topology and its interaction with other enzymes, lipid transfer proteins and receptors important for HDL metabolism.  相似文献   

14.
In humans, a chronically increased circulating level of C-reactive protein (CRP), a positive acute-phase reactant, is an independent risk factor for cardiovascular disease. This observation has led to considerable interest in the role of inflammatory proteins in atherosclerosis. In this review, after discussing CRP, we focus on the potential role in the pathogenesis of human vascular disease of inflammation-induced proteins that are carried by lipoproteins. Serum amyloid A (SAA) is transported predominantly on HDL, and levels of this protein increase markedly during acute and chronic inflammation in both animals and humans. Increased SAA levels predict the risk of cardiovascular disease in humans. Recent animal studies support the proposal that SAA plays a role in atherogenesis. Evidence is accruing that secretory phospholipase A(2), an HDL-associated protein, and platelet-activating factor acetylhydrolase, a protein associated predominantly with LDL in humans and HDL in mice, might also play roles both as markers and mediators of human atherosclerosis. In contrast to positive acute-phase proteins, which increase in abundance during inflammation, negative acute-phase proteins have received less attention. Apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, decreases during inflammation. Recent studies also indicate that HDL is oxidized by myeloperoxidase in patients with established atherosclerosis. These alterations may limit the ability of apoA-I to participate in reverse cholesterol transport. Paraoxonase-1 (PON1), another HDL-associated protein, also decreases during inflammation. PON1 is atheroprotective in animal models of hypercholesterolemia. Controversy over its utility as a marker of human atherosclerosis may reflect the fact that enzyme activity rather than blood level (or genotype) is the major determinant of cardiovascular risk. Thus, multiple lipoprotein-associated proteins that change in concentration during acute and chronic inflammation may serve as markers of cardiovascular disease. In future studies, it will be important to determine whether these proteins play a causal role in atherogenesis.  相似文献   

15.
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.  相似文献   

16.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

17.
Elevated levels of plasma high density lipoprotein (HDL) are strongly predictive of protection against atherosclerotic vascular disease. HDL particles likely have several beneficial actions in vivo, including the initiation of reverse cholesterol transport. The apparent importance of oxidative modification of low density lipoprotein in atherogenesis raises the question of how oxidative modification of HDL might affect its cardioprotective actions. HDL is readily oxidized using numerous models of lipoprotein oxidation. In vitro evidence suggests oxidation might impair some protective actions, but actually enhance other mechanisms induced by HDL that prevent the accumulation of cholesterol in the artery wall. This article reviews the current literature concerning the relative oxidizability of HDL, the structural changes induced in HDL by oxidation in vitro, and the potential consequences of oxidative modification on the protective actions of HDL in vivo.  相似文献   

18.
High density lipoprotein (HDL) isolated from human atherosclerotic lesions and the blood of patients with established coronary artery disease contains elevated levels of 3-nitrotyrosine and 3-chlorotyrosine. Myeloperoxidase (MPO) is the only known source of 3-chlorotyrosine in humans, indicating that MPO oxidizes HDL in vivo. In the current studies, we used tandem mass spectrometry to identify the major sites of tyrosine oxidation when lipid-free apolipoprotein A-I (apoA-I), the major protein of HDL, was exposed to MPO or peroxynitrite (ONOO(-)). Tyrosine 192 was the predominant site of both nitration and chlorination by MPO and was also the major site of nitration by ONOO(-). Electron paramagnetic spin resonance studies of spin-labeled apoA-I revealed that residue 192 was located in an unusually hydrophilic environment. Moreover, the environment of residue 192 became much more hydrophobic when apoA-I was incorporated into discoidal HDL, and Tyr(192) of HDL-associated apoA-I was a poor substrate for nitration by both myeloperoxidase and ONOO(-), suggesting that solvent accessibility accounted in part for the reactivity of Tyr(192). The ability of lipid-free apoA-I to facilitate ATP-binding cassette transporter A1 cholesterol transport was greatly reduced after chlorination by MPO. Loss of activity occurred in concert with chlorination of Tyr(192). Both ONOO(-) and MPO nitrated Tyr(192) in high yield, but unlike chlorination, nitration minimally affected the ability of apoA-I to promote cholesterol efflux from cells. Our results indicate that Tyr(192) is the predominant site of nitration and chlorination when MPO or ONOO(-) oxidizes lipid-free apoA-I but that only chlorination markedly reduces the cholesterol efflux activity of apoA-I. This impaired biological activity of chlorinated apoA-I suggests that MPO-mediated oxidation of HDL might contribute to the link between inflammation and cardiovascular disease.  相似文献   

19.
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN), yielding CNO and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.  相似文献   

20.
Acrolein, a representative carcinogenic aldehyde, that could be ubiquitously generated in biological systems under oxidative stress shows facile reactivity with a nucleophile such as a protein. In this study, to gain a better understanding of the molecular basis of acrolein modification of protein, we characterized the acrolein modification of a model peptide (the oxidized B chain of insulin) by electrospray ionization-liquid chromatography/mass spectrometry method and established a novel acrolein-lysine condensation reaction. In addition, we found that this condensation adduct represented the major antigenic adduct generated in acrolein-modified protein. To identify the modification site and structures of adducts generated in the acrolein-modified insulin B chain, both the acrolein-pretreated and untreated peptides were digested with V8 protease and the resulting peptides were subjected to electrospray ionization-liquid chromatography/mass spectrometry. This technique identified nine peptides, which contained the acrolein adducts at Lys-29 and the N terminus, and revealed that the reaction of the insulin B chain with acrolein gave multiple adducts, including an unknown adduct containing two molecules of acrolein per lysine. To identify this adduct, we incubated N(alpha)-acetyllysine with acrolein and isolated a product having the same molecular mass as the unknown acrolein-lysine adduct. On the basis of the chemical and spectroscopic evidence, the adduct was determined to be a novel pyridinium-type lysine adduct, N(epsilon)-(3-methylpyridinium)lysine (MP-lysine). The formation of MP-lysine was confirmed by amino acid analysis of proteins treated with acrolein. More notably, this condensation adduct appeared to be an intrinsic epitope of a monoclonal antibody 5F6 that had been raised against acrolein-modified protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号