首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.  相似文献   

2.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

3.
ATP-sensitive potassium (KATP) channels are reversibly inhibited by intracellular ATP. Agents that interact with sulfhydryl moieties produce an irreversible inhibition of KATP channel activity when applied to the intracellular membrane surface. ATP appears to protect against this effect, suggesting that the cysteine residue with which thiol reagents interact may either lie within the ATP-binding site or be inaccessible when the channel is closed. We have examined the interaction of the membrane-impermeant thiol-reactive agent p-chloromercuriphenylsulphonate (pCMPS) with the cloned β cell KATP channel. This channel comprises the pore-forming Kir6.2 and regulatory SUR1 subunits. We show that the cysteine residue involved in channel inhibition by pCMPS resides on the Kir6.2 subunit and is located at position 42, which lies within the NH2 terminus of the protein. Although ATP protects against the effects of pCMPS, the ATP sensitivity of the KATP channel was unchanged by mutation of C42 to either valine (V) or alanine (A), suggesting that ATP does not interact directly with this residue. These results are consistent with the idea that C42 is inaccessible to the intracellular solution, and thereby protected from interaction with pCMPS when the channel is closed by ATP. We also observed that the C42A mutation does not affect the ability of SUR1 to endow Kir6.2 with diazoxide sensitivity, and reduces, but does not prevent, the effects of MgADP and tolbutamide, which are mediated via SUR1. The Kir6.2-C42A (or V) mutant channel may provide a suitable background for cysteine-scanning mutagenesis studies.  相似文献   

4.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg2+) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. 86Rb+ flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of 86Rb+ efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

5.
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism.  相似文献   

6.
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism.  相似文献   

7.
ATP-sensitive potassium (K(ATP)) channels are composed of an ATP-binding cassette (ABC) protein (SUR1, SUR2A or SUR2B) and an inwardly rectifying K(+) channel (Kir6.1 or Kir6.2). Like other ABC proteins, the nucleotide binding domains (NBDs) of SUR contain a highly conserved "signature sequence" (the linker, LSGGQ) whose function is unclear. Mutation of the conserved serine to arginine in the linker of NBD1 (S1R) or NBD2 (S2R) did not alter the ability of ATP or ADP (100 microM) to displace 8-azido-[(32)P]ATP binding to SUR1, or abolish ATP hydrolysis at NBD2. We co-expressed Kir6.2 with wild-type or mutant SUR in Xenopus oocytes and recorded the resulting currents in inside-out macropatches. The S1R mutation in SUR1, SUR2A or SUR2B reduced K(ATP) current activation by 100 microM MgADP, whereas the S2R mutation in SUR1 or SUR2B (but not SUR2A) abolished MgADP activation completely. The linker mutations also reduced (S1R) or abolished (S2R) MgATP-dependent activation of Kir6.2-R50G co-expressed with SUR1 or SUR2B. These results suggest that the linker serines are not required for nucleotide binding but may be involved in transducing nucleotide binding into channel activation.  相似文献   

8.
The ATP-sensitive potassium (K(ATP)(+)) channel is crucial for the regulation of insulin secretion from the pancreatic beta-cell, and mutations in either the sulfonylurea receptor type 1 (SUR1) or Kir6. 2 subunit of this channel can cause persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We analyzed the functional consequences of the PHHI missense mutation R1420C, which lies in the second nucleotide-binding fold (NBF2) of SUR1. Mild tryptic digestion of SUR1 after photoaffinity labeling allowed analysis of the nucleotide-binding properties of NBF1 and NBF2. Labeling of NBF1 with 8-azido-[alpha-(32)P]ATP was inhibited by MgATP and MgADP with similar K(i) for wild-type SUR1 and SUR1-R1420C. However, the MgATP and MgADP affinities of NBF2 of SUR1-R1420C were about 5-fold lower than those of wild-type SUR1. MgATP and MgADP stabilized 8-azido-ATP binding at NBF1 of wild-type SUR1 by interacting with NBF2, but this cooperative nucleotide binding was not observed for SUR1-R1420C. Studies on macroscopic currents recorded in inside-out membrane patches revealed that the SUR1-R1420C mutation exhibits reduced expression but does not affect inhibition by ATP or tolbutamide or activation by diazoxide. However, co-expression with Kir6.2-R50G, which renders the channel less sensitive to ATP inhibition, revealed that the SUR1-R1420C mutation increases the EC(50) for MgADP activation from 74 to 197 microm. We suggest that the lower expression of the mutant channel and the reduced affinity of NBF2 for MgADP may lead to a smaller K(ATP)(+) current in R1420C-PHHI beta-cells and thereby to the enhanced insulin secretion. We also propose a new model for nucleotide activation of K(ATP)(+) channels.  相似文献   

9.
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.  相似文献   

10.
Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium (86Rb+) efflux assays, we show that KATP channels formed with P429L, A475V, or C1039Y mutants enhance KATP activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive KATP channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation.  相似文献   

11.
ATP-sensitive K(+) (K(ATP)) channels modulate their activity as a function of inhibitory ATP and stimulatory Mg-nucleotides. They are constituted by two proteins: a pore-forming K(+) channel subunit (Kir6.1, Kir6.2) and a regulatory sulfonylurea receptor (SUR) subunit, an ATP-binding cassette (ABC) transporter that confers MgADP stimulation to the channel. Channel regulation by MgADP is dependent on nucleotide interaction with the cytoplasmic nucleotide binding folds (NBF1 and NBF2) of the SUR subunit. Crystal structures of bacterial ABC proteins indicate that NBFs form as dimers, suggesting that NBF1-NBF2 heterodimers may form in SUR and other eukaryotic ABC proteins. We have modeled SUR1 NBF1 and NBF2 as a heterodimer, and tested the validity of the predicted dimer interface by systematic mutagenesis. Engineered cysteine mutations in this region have significant effects, both positive and negative, on MgADP stimulation of K(ATP) channels in excised patches and on macroscopic channel activity in intact cells. Additionally, the mutations cluster in the model structure according to their functional effect, such that patterns of alteration emerge. Of note, three gain-of-function mutations, leading to MgADP hyperstimulation of the channel, are located in the D-loop region at the center of the predicted dimer interface. Overall, the data support the idea that SUR1 NBFs assemble as heterodimers and that this interaction is functionally critical.  相似文献   

12.
The function of the ATP-sensitive potassium (KATP) channel relies on the proper coupling between its two subunits: the pore-forming Kir6.2 and the regulator SUR. The conformation of the interface between these two subunits can be monitored using a rhodamine 123 (Rho) protection assay because Rho blocks Kir6.2 with an efficiency that depends on the relative position of transmembrane domain (TMD) 0 of the associated SUR (Hosy, E., Dérand, R., Revilloud, J., and Vivaudou, M. (2007) J. Physiol. 582, 27–39). Here we find that the natural and synthetic KATP channel activators MgADP, zinc, and SR47063 induced a Rho-insensitive conformation. The activating mutation F132L in SUR1, which causes neonatal diabetes, also rendered the channel resistant to Rho block, suggesting that it stabilized an activated conformation by uncoupling TMD0 from the rest of SUR1. At a nearby residue, the SUR1 mutation E128K impairs trafficking, thereby reducing surface expression and causing hyperinsulinism. To augment channel density at the plasma membrane to investigate the effect of mutating this residue on channel function, we introduced the milder mutation E126A at the matching residue of SUR2A. Mutation E126A imposed a hypersensitive Rho phenotype indicative of a functional uncoupling between TMD0 and Kir6.2. These results suggest that the TMD0-Kir6.2 interface is mobile and that the gating modes of Kir6.2 correlate with distinct positions of TMD0. They further demonstrate that the second intracellular loop of SUR, which contains the two residues studied here, is a key structural element of the TMD0-Kir6.2 interface.  相似文献   

13.
ATP-sensitive potassium (KATP) channels link cellular metabolism to electrical activity in nerve, muscle, and endocrine tissues. They are formed as a functional complex of two unrelated subunits—a member of the Kir inward rectifier potassium channel family, and a sulfonylurea receptor (SUR), a member of the ATP-binding cassette transporter family, which includes cystic fibrosis transmembrane conductance regulators and multidrug resistance protein, regulators of chloride channel activity. This recent discovery has brought together proteins from two very distinct superfamilies in a novel functional complex. The pancreatic KATP channel is probably formed specifically of Kir6.2 and SUR1 isoforms. The relationship between SUR1 and Kir6.2 must be determined to understand how SUR1 and Kir6.2 interact to form this unique channel. We have used mutant Kir6.2 subunits and dimeric (SUR1-Kir6.2) constructs to examine the functional stoichiometry of the KATP channel. The data indicate that the KATP channel pore is lined by four Kir6.2 subunits, and that each Kir6.2 subunit requires one SUR1 subunit to generate a functional channel in an octameric or tetradimeric structure.  相似文献   

14.
ATP-sensitive potassium (KATP) channels comprise four pore-forming Kir6.2 subunits and four modulatory sulfonylurea receptor (SUR) subunits. The latter belong to the ATP-binding cassette family of transporters. KATP channels are inhibited by ATP (or ADP) binding to Kir6.2 and activated by Mg-nucleotide interactions with SUR. This dual regulation enables the KATP channel to couple the metabolic state of a cell to its electrical excitability and is crucial for the KATP channel’s role in regulating insulin secretion, cardiac and neuronal excitability, and vascular tone. Here, we review the regulation of the KATP channel by adenine nucleotides and present an equilibrium allosteric model for nucleotide activation and inhibition. The model can account for many experimental observations in the literature and provides testable predictions for future experiments.  相似文献   

15.
Ventricular ATP-sensitive potassium (KATP) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative KATP channel-associated proteins. We investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The KATP channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell KATP channel current density (activated by metabolic inhibition) was ∼40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia.  相似文献   

16.
The pancreatic ATP-sensitive potassium (K(ATP)) channel, a complex of four sulfonylurea receptor 1 (SUR1) and four potassium channel Kir6.2 subunits, regulates insulin secretion by linking metabolic changes to beta-cell membrane potential. Sulfonylureas inhibit K(ATP) channel activities by binding to SUR1 and are widely used to treat type II diabetes. We report here that sulfonylureas also function as chemical chaperones to rescue K(ATP) channel trafficking defects caused by two SUR1 mutations, A116P and V187D, identified in patients with congenital hyperinsulinism. Sulfonylureas markedly increased cell surface expression of the A116P and V187D mutants by stabilizing the mutant SUR1 proteins and promoting their maturation. By contrast, diazoxide, a potassium channel opener that also binds SUR1, had no effect on surface expression of either mutant. Importantly, both mutant channels rescued to the cell surface have normal ATP, MgADP, and diazoxide sensitivities, demonstrating that SUR1 harboring either the A116P or the V187D mutation is capable of associating with Kir6.2 to form functional K(ATP) channels. Thus, sulfonylureas may be used to treat congenital hyperinsulinism caused by certain K(ATP) channel trafficking mutations.  相似文献   

17.
The pancreatic β-cell ATP-sensitive potassium (KATP) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. KATP channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing KATP channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with KATP channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell KATP channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type KATP channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric KATP channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane.  相似文献   

18.
ATP-sensitive K+ (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue–residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms.  相似文献   

19.
The ATP-sensitive potassium channel (KATP) play a crucial role in coupling metabolic energy to the cell membrane potential, β-amyloid peptide (Aβ) neurotoxicity has been associated with cellular oxidative stress and metabolic impairment. Whether there is an interaction between KATP and Aβ or not? The expression of KATP subunits was to be investigated after the cultured primary rat basal forebrain cholinergic neurons being exposed to Aβ1-42. The subunits of KATP: Kir6.1, Kir6.2, SUR1 and SUR2 expressing change was observed by double Immunofluorescence and immunoblotting in cultured cholinergic neurons from different groups: treatment with Aβ1-42 (group Aβ1-42), pretreatment with diazoxide and then exposure to Aβ1-42 (group diazoxide + Aβ1-42), and the control (group control). The results showed that in response to the treatment with Aβ1-42 (2 μmol/L) for 24 h, the expression of Kir6.1 and SUR2 were significantly up-regulated, while this change can be partly reversed by pretreatment with diazoxide (1 mmol/L) for 1 h. There were significant increases in all KATP subunits expression levels after exposure to Aβ1-42 for 72 h. However, the up-regulation of Kir6.1, Kir6.2 and SUR2 except SUR1 can be partly reversed by pretreatment with diazoxide (1 mmol/L) for 1 h. It is concluded that exposure to Aβ1-42 for different time (24 and 72 h) induced differential regulation of KATP subunits expression in cultured primary rat basal forebrain cholinergic neurons. The change in composition of KATP may contribute to the dysfunction of KATP and membrane excitability disturbance. The effect of diazoxide on KATP subunits expression may explain, in part, the resistance of diazoxide to the toxicity of Aβ1-42.  相似文献   

20.

Background

Pancreatic beta cells express ATP-sensitive potassium (KATP) channels that are needed for normal insulin secretion and are targets for drugs that modulate insulin secretion. The KATP channel is composed of two subunits: a sulfonylurea receptor (SUR 1) and an inward rectifying potassium channel (Kir6.2). KATP channel activity is influenced by the metabolic state of the cell and initiates the ionic events that precede insulin exocytosis. Although drugs that target the KATP channel have the expected effects on insulin secretion in dogs, little is known about molecular aspects of this potassium channel. To learn more about canine beta cell KATP channels, we studied KATP channel expression by the normal canine pancreas and by insulin-secreting tumors of dogs.

Results

Pancreatic tissue from normal dogs and tumor tissue from three dogs with histologically-confirmed insulinomas was examined for expression of KATP channel subunits (SUR1 and Kir6.2) using RT-PCR. Normal canine pancreas expressed SUR1 and Kir6.2 subunits of the KATP channel. The partial nucleotide sequences for SUR1 and Kir6.2 obtained from the normal pancreas showed a high degree of homology to published sequences for other mammalian species. SUR1 and Kir6.2 expression was observed in each of the three canine insulinomas examined. Comparison of short sequences from insulinomas with those obtained from normal pancreas did not reveal any mutations in either SUR1 or Kir6.2 in any of the insulinomas.

Conclusion

Canine pancreatic KATP channels have the same subunit composition as those found in the endocrine pancreases of humans, rats, and mice, suggesting that the canine channel is regulated in a similar fashion as in other species. SUR1 and Kir6.2 expression was found in the three insulinomas examined indicating that unregulated insulin secretion by these tumors does not result from failure to express one or both KATP channel subunits.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号