首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An increase in extracellular potassium ion concentration, K o , significantly slows the potassium channel deactivation rate in squid giant axons, as previously shown. Surprisingly, the effect does not occur in all preparations which, coupled with the voltage independence of this result in preparations in which it does occur, suggests that it is mediated at a site outside of the electric field of the channel, and that this site is accessible to potassium ions in some preparations, but not in others. In other words, the effect does not appear to be related to occupancy of the channel by potassium ions. This conclusion is supported by a four-barrier, three-binding site model of single file diffusion through the channel in which one site, at most, is unoccupied by a potassium ion (single-vacancy model). The model is consistent with current-voltage relations with various levels of K o , and, by definition, with multiple occupancy by K+. The model predicts that occupancy of any given site is essentially independent of K o (or K i ). The effects of extracellular Rb+ and Cs+ on gating are strongly voltage dependent, and they were observed in all preparations investigated. Consequently, the mechanism underlying these results would appear to be different from that which underlies the effect of K+ on gating. In particular, the effect of Rb+ on gating is reduced by strong hyperpolarization, which in the context of the occupancy hypothesis, is consistent with the voltage dependence of the current-voltage relation in the presence of Rb+. The primary, novel, finding in this study is that the effects of Cs+ are counterintuitive in this regard. Specifically, the slowing of channel deactivation rate by Cs+ is also reduced by hyperpolarization, similar to the Rb+ results, whereas blockade is enhanced, which is seemingly inconsistent with the concept that occupancy of the channel by Cs+ underlies the effect of this ion on gating. This result is further elucidated by barrier modeling of the current-voltage relation in the presence of Cs+. Received: 19 December 1995/Revised: 10 June 1996  相似文献   

2.
Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations.  相似文献   

3.
Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2–22°C. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2–0.3 eo. The Ig On response obtained between −60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from −60 to −10 mV, and ∼0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at −50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between −90 and −50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8°C and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change.  相似文献   

4.
In this and the following paper we have examined the kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents in order to interpret these currents in terms of the gating behavior of the mslo channel. To do so, however, it was necessary to first find conditions by which we could separate the effects that changes in Ca2+ concentration or membrane voltage have on channel permeation from the effects these stimuli have on channel gating. In this study we investigate three phenomena which are unrelated to gating but are manifest in macroscopic current records: a saturation of single channel current at high voltage, a rapid voltage-dependent Ca2+ block, and a slow voltage-dependent Ba2+ block. Where possible methods are described by which these phenomena can be separated from the effects that changes in Ca2+ concentration and membrane voltage have on channel gating. Where this is not possible, some assessment of the impact these effects have on gating parameters determined from macroscopic current measurements is provided. We have also found that without considering the effects of Ca2+ and voltage on channel permeation and block, macroscopic current measurements suggest that mslo channels do not reach the same maximum open probability at all Ca2+ concentrations. Taking into account permeation and blocking effects, however, we find that this is not the case. The maximum open probability of the mslo channel is the same or very similar over a Ca2+ concentration range spanning three orders of magnitude indicating that over this range the internal Ca2+ concentration does not limit the ability of the channel to be activated by voltage.  相似文献   

5.
KCNQ (voltage-gated K+ channel family 7 (Kv7)) channels control cellular excitability and underlie the K+ current sensitive to muscarinic receptor signaling (the M current) in sympathetic neurons. Here we show that the novel anti-epileptic drug retigabine (RTG) modulates channel function of pore-only modules (PMs) of the human Kv7.2 and Kv7.3 homomeric channels and of Kv7.2/3 heteromeric channels by prolonging the residence time in the open state. In addition, the Kv7 channel PMs are shown to recapitulate the single-channel permeation and pharmacological specificity characteristics of the corresponding full-length proteins in their native cellular context. A mutation (W265L) in the reconstituted Kv7.3 PM renders the channel insensitive to RTG and favors the conductive conformation of the PM, in agreement to what is observed when the Kv7.3 mutant is heterologously expressed. On the basis of the new findings and homology models of the closed and open conformations of the Kv7.3 PM, we propose a structural mechanism for the gating of the Kv7.3 PM and for the site of action of RTG as a Kv7.2/Kv7.3 K+ current activator. The results validate the modular design of human Kv channels and highlight the PM as a high-fidelity target for drug screening of Kv channels.  相似文献   

6.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.  相似文献   

7.
Voltage-gated potassium channels of plants are multimeric proteins built of four α-subunits. In the model plant Arabidopsis thaliana , nine genes coding for K+ channel α-subunits have been identified. When co-expressed in heterologous expression systems, most of them display the ability to form heteromeric K+ channels. Till now it was not clear whether plants use this potential of heteromerization to increase the functional diversity of potassium channels. Here, we designed an experimental approach employing different transgenic plant lines that allowed us to prove the existence of heteromeric K+ channels in plants. The chosen strategy might also be useful for investigating the activity and function of other multimeric channel proteins like, for instance, cyclic-nucleotide gated channels, tandem-pore K+ channels and glutamate receptor channels.  相似文献   

8.
A toxin from a marine gastropod's defensive mucus, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT), was found to inhibit voltage-gated potassium channels by a novel mechanism. Voltage-clamp experiments with Shaker K channels reveal that externally applied BrMT slows channel opening but not closing. BrMT slows K channel activation in a graded fashion: channels activate progressively slower as the concentration of BrMT is increased. Analysis of single-channel activity indicates that once a channel opens, the unitary conductance and bursting behavior are essentially normal in BrMT. Paralleling its effects against channel opening, BrMT greatly slows the kinetics of ON, but not OFF, gating currents. BrMT was found to slow early activation transitions but not the final opening transition of the Shaker ILT mutant, and can be used to pharmacologically distinguish early from late gating steps. This novel toxin thus inhibits activation of Shaker K channels by specifically slowing early movement of their voltage sensors, thereby hindering channel opening. A model of BrMT action is developed that suggests BrMT rapidly binds to and stabilizes resting channel conformations.  相似文献   

9.
The effect of extracellular cation concentration and membrane voltage on the current carried by outward-rectifying K+ channels was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with double-barrelled microelectrodes and the K+ current was monitored under voltage clamp in 0.1–30 mm K+ and in equivalent concentrations of Rb+, Cs+ and Na+. From a conditioning voltage of −200 mV, clamp steps to voltages between −150 and +50 mV in 0.1 mm K+ activated current through outward-rectifying K+ channels (I K, out) at the plasma membrane in a voltage-dependent fashion. Increasing [K+] o shifted the voltage-sensitivity of I K, out in parallel with the equilibrium potential for K+ across the membrane. A similar effect of [K+] o was evident in the kinetics of I K, out activation and deactivation, as well as the steady-state conductance- (g K ) voltage relations. Linear conductances, determined as a function of the conditioning voltage from instantaneous I-V curves, yielded voltages for half-maximal conductance near −130 mV in 0.1 mm K+, −80 mV in 1.0 mm K+, and −20 mV in 10 mm K+. Similar data were obtained with Rb+ and Cs+, but not with Na+, consistent with the relative efficacy of cation binding under equilibrium conditions (K+≥ Rb+ > Cs+ > > Na+). Changing Ca2+ or Mg2+ concentrations outside between 0.1 and 10 mm was without effect on the voltage-dependence of g K or on I K, out activation kinetics, although 10 mm [Ca2+] o accelerated current deactivation at voltages negative of −75 mV. At any one voltage, increasing [K+] o suppressed g K completely, an action that showed significant cooperativity with a Hill coefficient of 2. The apparent affinity for K+ was sensitive to voltage, varying from 0.5 to 20 mm with clamp voltages near −100 to 0 mV, respectively. These, and additional data indicate that extracellular K+ acts as a ligand and alters the voltage-dependence of I K, out gating; the results implicate K+-binding sites accessible from the external surface of the membrane, deep within the electrical field, but distinct from the channel pore; and they are consistent with a serial 4-state reaction-kinetic model for channel gating in which binding of two K+ ions outside affects the distribution between closed states of the channel. Received: 27 November 1996/Revised: 4 March 1997  相似文献   

10.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

11.
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.  相似文献   

12.
To determine how intracellular Ca(2+) and membrane voltage regulate the gating of large conductance Ca(2+)-activated K(+) (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca(2+) over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage sensor activation and the closed (C) to open (O) conformational change (Horrigan, F.T., and R.W. Aldrich. 1999. J. Gen. Physiol. 114:305-336; Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). In 0 Ca(2+), the steady-state gating charge-voltage (Q(SS)-V) relationship is shallower and shifted to more negative voltages than the conductance-voltage (G(K)-V) relationship. Calcium alters the relationship between Q-V and G-V, shifting both to more negative voltages such that they almost superimpose in 70 microM Ca(2+). This change reflects a differential effect of Ca(2+) on voltage sensor activation and channel opening. Ca(2+) has only a small effect on the fast component of ON gating current, indicating that Ca(2+) binding has little effect on voltage sensor activation when channels are closed. In contrast, open probability measured at very negative voltages (less than -80 mV) increases more than 1,000-fold in 70 microM Ca(2+), demonstrating that Ca(2+) increases the C-O equilibrium constant under conditions where voltage sensors are not activated. Thus, Ca(2+) binding and voltage sensor activation act almost independently, to enhance channel opening. This dual-allosteric mechanism can reproduce the steady-state behavior of mSlo1 over a wide range of conditions, with the assumption that activation of individual Ca(2+) sensors or voltage sensors additively affect the energy of the C-O transition and that a weak interaction between Ca(2+) sensors and voltage sensors occurs independent of channel opening. By contrast, macroscopic I(K) kinetics indicate that Ca(2+) and voltage dependencies of C-O transition rates are complex, leading us to propose that the C-O conformational change may be described by a complex energy landscape.  相似文献   

13.
Neutralization of the aspartate near the selectivity filter in the GYGD pore sequence (D292N) of the voltage- and Ca(2+)-activated K+ channel (MaxiK, BKCa) does not prevent conduction like the corresponding mutation in Shaker channel, but profoundly affects major biophysical properties of the channel (Haug, T., D. Sigg, S. Ciani, L. Toro, E. Stefani, and R. Olcese. 2004. J. Gen. Physiol. 124:173-184). Upon depolarizations, the D292N mutant elicited mostly gating current, followed by small or no ionic current, at voltages where the wild-type hSlo channel displayed robust ionic current. In fact, while the voltage dependence of the gating current was not significantly affected by the mutation, the overall activation curve was shifted by approximately 20 mV toward more depolarized potentials. Several lines of evidence suggest that the mutation prevents population of certain open states that in the wild type lead to high open probability. The activation curves of WT and D292N can both be fitted to the sum of two Boltzmann distributions with identical slope factors and half activation potentials, just by changing their relative amplitudes. The steeper and more negative component of the activation curve was drastically reduced by the D292N mutation (from 0.65 to 0.30), suggesting that the population of open states that occurs early in the activation pathway is reduced. Furthermore, the slow component of the gating current, which has been suggested to reflect transitions from closed to open states, was greatly reduced in D292N channels. The D292N mutation also affected the limiting open probability: at 0 mV, the limiting open probability dropped from approximately 0.5 for the wild-type channel to 0.06 in D292N (in 1 mM [Ca2+]i). In addition to these effects on gating charge and open probability, as already described in Part I, the D292N mutation introduces a approximately 40% reduction of outward single channel conductance, as well as a strong outward rectification.  相似文献   

14.
The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer''s cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process.  相似文献   

15.
In Kv channels, an activation gate is thought to be located near the intracellular entrance to the ion conduction pore. Although the COOH terminus of the S6 segment has been implicated in forming the gate structure, the residues positioned at the occluding part of the gate remain undetermined. We use a mutagenic scanning approach in the Shaker Kv channel, mutating each residue in the S6 gate region (T469-Y485) to alanine, tryptophan, and aspartate to identify positions that are insensitive to mutation and to find mutants that disrupt the gate. Most mutants open in a steeply voltage-dependent manner and close effectively at negative voltages, indicating that the gate structure can both support ion flux when open and prevent it when closed. We find several mutant channels where macroscopic ionic currents are either very small or undetectable, and one mutant that displays constitutive currents at negative voltages. Collective examination of the three types of substitutions support the notion that the intracellular portion of S6 forms an activation gate and identifies V478 and F481 as candidates for occlusion of the pore in the closed state.  相似文献   

16.
脑胶质瘤是原发性颅内恶性肿瘤。患者的5年存活率不足1%。目前,除手术切除外,尚无有效的治疗手段。近年来发现,脑胶质瘤发病可能与多种钾离子通道的异常表达有关。自噬是膜包裹部分胞质和细胞内需降解的蛋白质、细胞器,并与溶酶体一起降解其所包裹内容物的生理过程。诱导胶质瘤细胞的自噬,促进其凋亡是肿瘤治疗的一种新策略。本室前期研究发现,电压依赖型钾通道1.5(Kv1.5)参与胞膜小窖标志蛋白质(caveolae,Cav-1)介导的多种肿瘤细胞的增殖和凋亡,但是否参与胶质瘤细胞的自噬并不清楚。本文首先利用不同浓度的K+通道阻断剂四乙胺(tetra-ethylammonium,TEA)、Kv通道阻断剂四氨基吡啶(4-amino-pyridine,4-AP)和Kv1.5通道特异性阻断剂DPO-1(diphenyl phosphine oxide-1)分别在不同时间,作用于人脑胶质瘤细胞U251,观察其对细胞存活的影响。发现DPO-1对U251细胞具有双向作用:低浓度促进存活,高浓度抑制存活。其中,1 mmol/L DPO-1处理6 h,可促进自噬相关蛋白质LC3的表达,而抑制mTOR信号蛋白质的磷酸化水平,表明Kv1.5通道可能参与胶质瘤细胞的自噬。然后,利用基因转染技术分别敲低和过表达Kv1.5通道的蛋白质水平,发现敲低Kv1.5通道蛋白,促进胶质瘤细胞的自噬,激活ERK信号通路,而过表达Kv1.5通道蛋白,则抑制胶质瘤细胞的自噬。进一步利用流式细胞技术观察细胞凋亡,发现改变Kv1.5通道蛋白的表达水平,可诱发细胞早期凋亡。提示Kv1.5通道参与人脑胶质瘤细胞的自噬过程。这为临床利用特异性Kv通道阻断剂靶向治疗胶质瘤提供了新的理论和实验依据。  相似文献   

17.
Evidence from both human and murine cardiomyocytes suggests that truncated isoforms of Kv1.5 can be expressed in vivo. Using whole-cell patch-clamp recordings, we have characterized the activation and inactivation properties of Kv1.5DeltaN209, a naturally occurring short form of human Kv1.5 that lacks roughly 75% of the T1 domain. When expressed in HEK 293 cells, this truncated channel exhibited a V(1/2) of -19.5 +/- 0.9 mV for activation and -35.7 +/- 0.7 mV for inactivation, compared with a V(1/2) of -11.2 +/- 0.3 mV for activation and -0.9 +/- 1.6 mV for inactivation in full-length Kv.15. Kv1.5DeltaN209 channels exhibited several features rarely observed in voltage-gated K(+) channels and absent in full-length Kv1.5, including a U-shaped voltage dependence of inactivation and excessive cumulative inactivation, in which a train of repetitive depolarizations resulted in greater inactivation than a continuous pulse. Kv1.5DeltaN209 also exhibited a stronger voltage dependence to recovery from inactivation, with the time to half-recovery changing e-fold over 30 mV compared with 66 mV in full-length Kv1.5. During trains of human action potential voltage clamps, Kv1.5DeltaN209 showed 30-35% greater accumulated inactivation than full-length Kv1.5. These results can be explained with a model based on an allosteric model of inactivation in Kv2.1 (Klemic, K.G., C.-C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Biophys. J. 74:1779-1789) in which an absence of the NH(2) terminus results in accelerated inactivation from closed states relative to full-length Kv1.5. We suggest that differential expression of isoforms of Kv1.5 may contribute to K(+) current diversity in human heart and many other tissues.  相似文献   

18.
The voltage sensor of the Shaker potassium channel is comprised mostly of positively charged residues in the putative fourth transmembrane segment, S4 (Aggarwal, S.K., and R. MacKinnon. 1996. Neuron. 16:1169-1177; Seoh, S.-A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996. Neuron. 16:1159-1167). Movement of the voltage sensor in response to a change in the membrane potential was examined indirectly by measuring how the accessibilities of residues in and around the sensor change with voltage. Each basic residue in the S4 segment was individually replaced with a histidine. If the histidine tag is part of the voltage sensor, then the gating charge displaced by the voltage sensor will include the histidine charge. Accessibility of the histidine to the bulk solution was therefore monitored as pH-dependent changes in the gating currents evoked by membrane potential pulses. Histidine scanning mutagenesis has several advantages over other similar techniques. Since histidine accessibility is detected by labeling with solution protons, very confined local environments can be resolved and labeling introduces minimal interference of voltage sensor motion. After histidine replacement of either residue K374 or R377, there was no titration of the gating currents with internal or external pH, indicating that these residues do not move in the transmembrane electric field or that they are always inaccessible. Histidine replacement of residues R365, R368, and R371, on the other hand, showed that each of these residues traverses entirely from internal exposure at hyperpolarized potentials to external exposure at depolarized potentials. This translocation enables the histidine to transport protons across the membrane in the presence of a pH gradient. In the case of 371H, depolarization drives the histidine to a position that forms a proton pore. Kinetic models of titrateable voltage sensors that account for proton transport and conduction are presented. Finally, the results presented here are incorporated into existing information to propose a model of voltage sensor movement and structure.  相似文献   

19.
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate.  相似文献   

20.
Summary Inward currents carried by external Cs, Rb, NH4 and K through theI K1 channel were studied using a whole-cell voltage clamp technique. Cs, NH4, and Rb currents could be recorded negative to –40 mV following depolarizing prepulses (0 mV and 200–1000 msec in duration). The current activation displayed an instantaneous component followed by a monoexponential increase () to a peak amplitude. Subsequent inactivation was fit by a single exponential, i. With hyperpolarization, and i decreasede-fold per 36 and 25 mV, respectively. In Ca-free external solutions (pipette [Mg]0.3mm), inactivation was absent, consistent with the hypothesis that inactivation represents time- and voltage-dependent block of Cs, NH4, and Rb currents by external Ca. The inactivation and degree of steady-state block was greatest when Cs was the charge carrier, followed by NH4, and then Rb. K currents, however, did not inactivate in the presence of Ca. Na and Li did not carry any significant current within the resolution of our recordings. Comparison ofpeak inward current ratios (I x/IK) as an index of permeability revealed a higher permeance of Cs (0.15), NH4 (0.30), and Rb (0.51) relative to K (1.0) than that obtained by comparing thesteady-state current ratios (CsNH4RbK0.010.060.211.0). At any given potential, was smaller the more permeant the cation. In the absence of depolarizing prepulses, the amplitude of was reduced. Divalent-free solutions did not significantly affect activatio in the presence of 0.3mm pipette [Mg]. When pipette [Mg] was buffered to 50 m, however, removal of external Ca and Mg lead to a four- to fivefold increase in Cs currents and loss of both time-dependent activation and inactivation (reversible upon repletion of external Ca).These results suggest that (i) permeability ratios forI K1 should account for differences in the degree to which monovalent currents are blocked by extracellular Ca and (ii) extracellular or intracellular divalent cations contribute to the slow phase of activation which may represent either (a) the actual rate of Mg or Ca extrusion from the channel into the cell, a process which may be enhanced by repulsive interaction with the incoming permeant monovalent cation or (b) an intrinsic gating process that is strongly modulated by the permeant monovalent ion and divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号