首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Squid giant axons recover from acid loads by activating a Na(+)-driven Cl-HCO(3) exchanger. We internally dialyzed axons to an intracellular pH (pH( i )) of 6.7, halted dialysis and monitored the pH(i) recovery (increase) in the presence of ATP or other nucleotides, using cyanide to block oxidative phosphorylation. We computed the equivalent acid-extrusion rate (J(H)) from the rate of pH(i) increase and intracellular buffering power. In experimental series 1, we used dialysis to vary [ATP](i), finding that Michaelis-Menten kinetics describes J (H) vs. [ATP](i), with an apparent V(max) of 15.6 pmole cm(-2 )s(-1) and K (m) of 124 microM. In series 2, we examined ATP gamma S, AMP-PNP, AMP-PCP, AMP-CPP, GMP-PNP, ADP, ADP beta S and GDP beta S to determine if any, by themselves, could support transport. Only ATP gamma S (8 mM) supported acid extrusion; ATP gamma S also supported the HCO (3)(-) -dependent (36)Cl efflux expected of a Na(+)-driven Cl-HCO(3) exchanger. Finally, in series 3, we asked whether any nucleotide could alter J (H) in the presence of a background [ATP](i) of approximately 230 microM (control J (H) = 11.7 pmol cm(-2 )s(-1)). We found J (H) was decreased modestly by 8 mM AMP-PNP (J (H) = 8.0 pmol cm(-2 )s(-1)) but increased modestly by 1 mM ADP beta S (J (H) = 16.0 pmol cm(-2 )s(-1)). We suggest that ATP gamma S leads to stable phosphorylation of the transporter or an essential activator.  相似文献   

2.
Differences in morningness‐eveningness among humans are commonly ascribed to circadian parameters, such as circadian period and responsivity to environmental time cues, as well as homeostatic sleep drive. Light is the primary synchronizer of the human biological clock, and if circadian differences exist between morning and evening types, they should have different phase angles of entrainment to the light/dark cycle; that is, morning and evening types should have different patterns of light exposure relative to endogenous circadian phase (ECP). When phase angle of entrainment is strictly defined as the relationship between a marker of ECP and the timing of light exposure, such differences have been demonstrated in the laboratory under controlled light/dark cycles and have recently been shown under conditions of spring and summer light exposure outside the laboratory, taking into account the variable intensity of light. Here, we report similar results from a large (n=66), diverse cohort of morning and evening types across the age span studied at all different times of the year. Differences between morning and evening types in light exposure relative to ECP, indicative of a difference in the phase angle of entrainment to the external light/dark cycle, were found. Specifically, evening types, compared to morning types, had a higher ratio of phase advancing to phase delaying by light. We interpret this as indicating a longer circadian period (τ) in evening types.  相似文献   

3.
High speed video imaging microscopy and the pH-sensitive fluorophore2′,7′,-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) were used to examine acid-base functions of beta-intercalated cells of the rabbit cortical collecting duct. The presence of intercalated cells was established and the properties of apical and basolateral acid-base transporters assessed by monitoring cell pH during acid loading and luminal and basolateral ion substitutions. We showed that treatment of beta-intercalated cells with ammonium chloride (20 mm) induced a profound decrease of their intracellular pH from 6.98 ± 5.93 ± 0.08. pH recovery occurred after different lag periods ranging between 2 to 15 min (0.22 ± 0.04 dpH/dt). We demonstrated that this pH recovery mechanism was independent of basolateral Na+ and apical HCO 3 and K+. It was also not affected by apical and basolateral addition of NEM, by basolateral DIDS and by apical application of the H-KATPase inhibitor SCH28080. The process of pH recovery was however, critically dependent on basolateral HCO 3. These results are best explained by acid-induced insertion and/or activation of chloride-bicarbonate exchangers that are functional properties with their apical analogues. Received: 11 January 1994/Revised: 13 June 1997  相似文献   

4.
The regulatory role of intracellular pH changes and of transmembrane Cl transport in the activation of Nicotiana tabacum L. pollen grains at a stage preceding in vitro germination was studied. The acidification of the cytosol with propionic acid hindered the germination of pollen grains, whereas its alkalization by fusicoccin-stimulated H+-ATPase activity of plasma membranes sharply increased the germination frequency with respect to control values. The activation of pollen grains was accompanied by the Cl efflux. The blockage of Cl efflux with 1 mM ethacrynic acid significantly decreased the intracellular pH and fully inhibited germination. The results allow assumption that the intracellular pH rise and Cl efflux are prerequisites for pollen grain activation.  相似文献   

5.
6.
A pure strain of Microbacterium lacticum DJ-1 capable of anaer-obic biodegradation of ethylbenzene was isolated from soil contaminated with gasoline. Growth of the strain and biodegradation of ethylbenzene in batch cultures led to stoichiometric reduction of nitrate. M. lacticum DJ-1 could degrade 100 mg L?1 of ethylbenzene completely, with a maximum degradation rate of 15.02 ± 1.14 mg L?1 day?1. Increasing the initial concentration of ethy-lbenzene resulted in decreased degradative ability. The cell-specific growth rates on ethylbenzene conformed to the Haldane–Andrew model in the substrate level range of 10–150 mg L?1. Kinetic parameters were determined by nonlinear regression on specific growth rates and various initial substrate concentrat-ions, and the values of the maximum specific growth rate, half saturation constant, and inhibition constant were 0.71 day?1, 34.3 mg L?1, and 183.5 mg L?1, respectively. This is the first report of ethylbenzene biodegradation by a bacterium of Microbacterium lacticum under nitrate-reducing conditions.  相似文献   

7.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl = 150 mequiv./l). Membrane potential was estimated to be −23.3 ± 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl activities are 4.6 ± 0.5; 68.3 ± 8.0; and 43.6 ± 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 ± 0.02 and 0.41 ± 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl (0.67 ± 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

8.
To elucidate the mechanisms involved in the increase in free amino acids during postmortem storage of meat, a novel aminopeptidase was purified from bovine skeletal muscle by ammonium sulfate fractionation and successive chromatographies such as DEAE-cellulose, Sephacryl S-200, Hydroxyapatite, Phenyl-Sepharose, and Hi-Trap affinity column chromatography. The molecular mass of the enzyme was found to be 58 kDa on SDS–PAGE. This enzyme had optimum pH at around 7.5, and preferably hydrolyzed Ala-β-naphthylamide (-NA) in amino acid-NAs. The activity was strongly inhibited by phenylmethansulfonyl fluoride (PMSF) and bestatin, suggesting that it is to be classified as a serine protease. Moreover, the activity was enhanced by chloride and nitrate ions, which is the most remarkable property of this enzyme. The enzyme appeared to be involved in the increase in free amino acids during postmortem storage of meat.  相似文献   

9.
Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK) is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possbile interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT) and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.  相似文献   

10.
11.
12.
Alterations in mitochondrial protein acetylation are implicated in the pathophysiology of diabetes, the metabolic syndrome, mitochondrial disorders, and cancer. However, a viable mechanism responsible for the widespread acetylation in mitochondria remains unknown. Here, we demonstrate that the physiologic pH and acyl-CoA concentrations of the mitochondrial matrix are sufficient to cause dose- and time-dependent, but enzyme-independent acetylation and succinylation of mitochondrial and nonmitochondrial proteins in vitro. These data suggest that protein acylation in mitochondria may be a chemical event facilitated by the alkaline pH and high concentrations of reactive acyl-CoAs present in the mitochondrial matrix. Although these results do not exclude the possibility of enzyme-mediated protein acylation in mitochondria, they demonstrate that such a mechanism may not be required in its unique chemical environment. These findings may have implications for the evolutionary roles that the mitochondria-localized SIRT3 deacetylase and SIRT5 desuccinylase have in the maintenance of metabolic health.  相似文献   

13.
Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp) 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T55VLD58SGISEVR65) and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4). The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.  相似文献   

14.
Cataract, a major cause of visual impairment worldwide, is the opacification of the eye’s crystalline lens due to aggregation of the crystallin proteins. The research reported here is aimed at investigating the aggregating behavior of γ-crystallin proteins in various incubation conditions. Thioflavin T binding assay, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, intrinsic (tryptophan) fluorescence spectroscopy, light scattering, and electron microscopy were used for structural characterization. Molecular dynamics simulations and bioinformatics prediction were performed to gain insights into the γD-crystallin mechanisms of fibrillogenesis. We first demonstrated that, except at pH 7.0 and 37°C, the aggregation of γD-crystallin was observed to be augmented upon incubation, as revealed by turbidity measurements. Next, the types of aggregates (fibrillar or non-fibrillar aggregates) formed under different incubation conditions were identified. We found that, while a variety of non-fibrillar, granular species were detected in the sample incubated under pH 7.0, the fibrillogenesis of human γD-crystallin could be induced by acidic pH (pH 2.0). In addition, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and intrinsic fluorescence spectroscopy were used to characterize the structural and conformational features in different incubation conditions. Our results suggested that incubation under acidic condition led to a considerable change in the secondary structure and an enhancement in solvent-exposure of the hydrophobic regions of human γD-crystallin. Finally, molecular dynamics simulations and bioinformatics prediction were performed to better explain the differences between the structures and/or conformations of the human γD-crystallin samples and to reveal potential key protein region involved in the varied aggregation behavior. Bioinformatics analyses revealed that the initiation of amyloid formation of human γD-crystallin may be associated with a region within the C-terminal domain. We believe the results from this research may contribute to a better understanding of the possible mechanisms underlying the pathogenesis of senile nuclear cataract.  相似文献   

15.
16.
17.
18.
19.
20.
To elucidate photoinhibitory characteristics and their genetic background in rice (Oryza sativa L. ), PS Ⅱ electron transport activities, D1 protein contents, chlorophyll a fluorecence parameters, net photosynthetic rates (PN), photorespiratory rates (PR) and RuBPCase/Oase activities were measured, and kinetic analysis of RuBPCase was carried out in indica and japonica subspecies of rice and their reciprocal cross Fl hybrids after photoinhibitory treatment in 21% O2 and CO2-free gases under a PFD of 1 000/anol photons'm-2 · s-l for 3 h. The results are as follows: Japonica rice, keeping less net degradation of D1 protein and maintaining higher PS Ⅱ electron transport activities and photo chemical efficiency of PS Ⅱ (FV/Fm), was more tolerant to photo inhibition as compared with indica rice. However, the D1 protein contents, PS Ⅱ electron transport activities and Fv/Fm in their reciprocal cross F1 hybrids, though lying between the values of their parents, were closer to those in their maternal lines rather to their paternal lines. Characteristics of photosynthetic CO2 exchange were further observed. The Pa was relatively stable, yet the PN decreased obviously and, as a results, the PR/PN increased in all genotypes. There were more decrease in PN and more increase in PR/PN in photoinhibition-sensitive indica than in the photoinhibition-tolerant japonica. However, the PR/PN in the reciprocal cross Fl hybrids, though lying between the values of their parents, was closer to that in their maternal lines than to paternal lines. No obvious changes were observed in the activities of RuBPCase/Oase, Km (CO2) and Vmax (CO2) of RuBPCase in indica and japonica rice and their reciprocal cross F1 hybrids before and after photoinhibitory treatment. Furthermore, markedly positive correlation between D1 protein contents and Fv/Fm(r = -0.950 1), and negative correlation between D1 protein contents and PR/PN(r = 0.976 8) were demons trated. These results infer that the D1 protein encoded by the plastid gene from maternal line was the molecular basis of photoinhibitory characteristics and their physiological inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号