首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semaphorins and their receptors, plexins, are widely expressed in embryonic and adult tissues. In general, their functions are poorly characterized, but in neurons they provide essential attractive and repulsive cues that are necessary for axon guidance [1-3]. The Rho family GTPases Rho, Rac, and Cdc42 control signal transduction pathways that link plasma membrane receptors to the actin cytoskeleton and thus regulate many actin-driven processes, including cell migration and axon guidance [4-7]. Using yeast two-hybrid screening and in vitro interaction assays, we show that Rac in its active, GTP bound state interacts directly with the cytoplasmic domain of mammalian and Drosophila B plexins. Plexin-B1 clustering in fibroblasts does not cause the formation of lamellipodia, which suggests that Rac is not activated. Instead, it results in the assembly of actin:myosin filaments and cell contraction, which indicates Rho activation. Surprisingly, these cytoskeletal changes are both Rac and Rho dependent. Clustering of a mutant plexin, lacking the Rac binding region, induced similar cytoskeletal changes, and this finding indicates that the physical interaction of plexin-B1 with Rac is not required for Rho activation. Our findings that plexin-B signaling to the cytoskeleton is both Rac and Rho dependent form a starting point for unraveling the mechanism by which semaphorins and plexins control axon guidance and cell migration.  相似文献   

2.
Plexins are widely expressed transmembrane proteins that, in the nervous system, mediate repulsive signals of semaphorins. However, the molecular nature of plexin-mediated signal transduction remains poorly understood. Here, we demonstrate that plexin-B family members associate through their C termini with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. Activation of plexin-B1 by semaphorin 4D regulates PDZ-RhoGEF/LARG activity leading to RhoA activation. In addition, a dominant-negative form of PDZ-RhoGEF blocks semaphorin 4D-induced growth cone collapse in primary hippocampal neurons. Our study indicates that the interaction of mammalian plexin-B family members with the multidomain proteins PDZ-RhoGEF and LARG represents an essential molecular link between plexin-B and localized, Rho-mediated downstream signaling events which underly various plexin-mediated cellular phenomena including axonal growth cone collapse.  相似文献   

3.
Plexins are receptors for the axon guidance molecule semaphorins, and several lines of evidence suggest that Rho family small GTPases are implicated in the downstream signaling of Plexins. Recent studies have demonstrated that Plexin-B1 activates RhoA and induces growth cone collapse through Rho-specific guanine nucleotide exchange factor PDZ-RhoGEF. Here we show that Rnd1, a member of Rho family GTPases, directly interacted with the cytoplasmic domain of Plexin-B1. In COS-7 cells, coexpression of Rnd1 and Plexin-B1 induced cell contraction in response to semaphorin 4D (Sema4D), a ligand for Plexin-B1, whereas expression of Plexin-B1 alone or coexpression of Rnd1 and a Rnd1 interaction-defective mutant of Plexin-B1 did not. The Sema4D-induced contraction in Plexin-B1/Rnd1-expressing COS-7 cells was suppressed by dominant negative RhoA, a Rho-associated kinase inhibitor, a dominant negative form of PDZ-RhoGEF, or deletion of the carboxyl-terminal PDZ-RhoGEF-binding region of Plexin-B1, indicating that the PDZ-RhoGEF/RhoA/Rho-associated kinase pathway is involved in this morphological effect. We also found that Rnd1 promoted the interaction between Plexin-B1 and PDZ-RhoGEF and thereby dramatically potentiated the Plexin-B1-mediated RhoA activation. We propose that Rnd1 plays an important role in the regulation of Plexin-B1 signaling, leading to Rho activation during axon guidance and cell migration.  相似文献   

4.
Plexins are widely expressed transmembrane proteins that mediate the effects of semaphorins. The molecular mechanisms of plexin-mediated signal transduction are still rather unclear. Plexin-B1 has recently been shown to mediate activation of RhoA through a stable interaction with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. However, it is unclear how the activity of plexin-B1 and its downstream effectors is regulated by its ligand Sema4D. Here, we show that plexin-B family members stably associate with the receptor tyrosine kinase ErbB-2. Binding of Sema4D to plexin-B1 stimulates the intrinsic tyrosine kinase activity of ErbB-2, resulting in the phosphorylation of both plexin-B1 and ErbB-2. A dominant-negative form of ErbB-2 blocks Sema4D-induced RhoA activation as well as axonal growth cone collapse in primary hippocampal neurons. Our data indicate that ErbB-2 is an important component of the plexin-B receptor system and that ErbB-2-mediated phosphorylation of plexin-B1 is critically involved in Sema4D-induced RhoA activation, which underlies cellular phenomena downstream of plexin-B1, including axonal growth cone collapse.  相似文献   

5.
The Rho family GTPase has been implicated in plexin-B1, a receptor for Semaphorin 4D (Sema4D), mediating signal transduction. Rho may also play a function in this signaling pathway as well as Rac, but the mechanisms for Rho regulation are poorly understood. In this study, we have identified two kinds of PDZ domain-containing Rho-specific guanine nucleotide exchange factors (RhoGEFs) as proteins interacting with plexin-B1 cytoplasmic domain. These PDZ domain-containing RhoGEFs showed significant homology to human KIAA0380 (PDZ-RhoGEF) and LARG (KIAA0382), respectively. Both KIAA0380 and LARG could bind plexin-B1 and a deletion mutant analysis of plexin-B1, KIAA0380 and LARG revealed that KIAA0380 and LARG bound plexin-B1 cytoplasmic tail through their PDZ domains. The tissue distribution analysis indicated that plexin-B1 was co-localized with KIAA0380 and LARG in various tissues. Immunocytochemical analysis showed that LARG was recruited to plasma membrane by plexin-B1. These results suggest that PDZ domain-containing RhoGEFs play a role in Sema4D-plexin-B1 mediating signal transduction.  相似文献   

6.
Plexins represent a novel family of transmembrane receptors that transduce attractive and repulsive signals mediated by the axon-guiding molecules semaphorins. Emerging evidence implicates Rho GTPases in these biological events. However, Plexins lack any known catalytic activity in their conserved cytoplasmic tails, and how they transduce signals from semaphorins to Rho is still unknown. Here we show that Plexin B2 associates directly with two members of a recently identified family of Dbl homology/pleckstrin homology containing guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and Leukemia-associated Rho GEF (LARG). This physical interaction is mediated by their PDZ domains and a PDZ-binding motif found only in Plexins of the B family. In addition, we show that ligand-induced dimerization of Plexin B is sufficient to stimulate endogenous RhoA potently and to induce the reorganization of the cytoskeleton. Moreover, overexpression of the PDZ domain of PDZ-RhoGEF but not its regulator of G protein signaling domain prevents cell rounding and neurite retraction of differentiated PC12 cells induced by activation of endogenous Plexin B1 by semaphorin 4D. The association of Plexins with LARG and PDZ-RhoGEF thus provides a direct molecular mechanism by which semaphorins acting on Plexin B can control Rho, thereby regulating the actin-cytoskeleton during axonal guidance and cell migration.  相似文献   

7.
The plexin family of transmembrane receptors are important for axon guidance, angiogenesis, but also in cancer. Recently, plexin-B1 somatic missense mutations were found in both primary tumors and metastases of breast and prostate cancers, with several mutations mapping to the Rho GTPase binding domain (RBD) in the cytoplasmic region of the receptor. Here we present the NMR solution structure of this domain, confirming that the protein has both a ubiquitin-like fold and surface features. Oncogenic mutations T1795A and T1802A are located in a loop region, perturb the average structure locally, and have no effect on Rho GTPase binding affinity. Mutations L1815F and L1815P are located at the Rho GTPase binding site and are associated with a complete loss of binding for Rac1 and Rnd1. Both are found to disturb the conformation of the beta3-beta4 sheet and the orientation of surrounding side chains. Our study suggests that the oncogenic behavior of the mutants can be rationalized with reference to the structure of the RBD of plexin-B1.  相似文献   

8.
The strict spatio-temporal control of Rho GTPases is critical for many cellular functions, including cell motility, contractility, and growth. In this regard, the prototypical Rho family GTPases, Rho, Rac, and Cdc42 regulate the activity of each other by a still poorly understood mechanism. Indeed, we found that constitutively active forms of Rac inhibit stress fiber formation and Rho stimulation by thrombin. Surprisingly, a mutant of Rac that is unable to activate Pak1 failed to inhibit thrombin signaling to Rho. To explore the underlying mechanism, we investigated whether Pak1 could regulate guanine nucleotide exchange factors (GEFs) for Rho. We found that Pak1 associates with P115-RhoGEF but not with PDZ-RhoGEF or LARG, and knock down experiments revealed that P115-RhoGEF plays a major role in signaling from thrombin receptors to Rho in HEK293T cells. Pak1 binds the DH-PH domain of P115-RhoGEF, thus suggesting a mechanism by which Rac stimulation of Pak1 may disrupt receptor-dependent Rho signaling. In agreement, expression of a dominant-negative Pak-Inhibitory Domain potentiated the activation of Rho by thrombin, and prevented the inhibition of Rho by Rac. These findings indicate that Rac interferes with receptor-dependent Rho stimulation through Pak1, thus providing a mechanism for cross-talk between these two small-GTPases.  相似文献   

9.
Semaphorins are a large family of molecular cues implicated in neural development and in a variety of functions outside the nervous system. Semaphorin 5A (Sema5A) is a transmembrane semaphorin, containing seven thrombospondin type-1 repeats, which was recently found to control axon guidance. Here we show that plexin-B3 is a high-affinity receptor specific for Sema5A. We further demonstrate that plexin-B3 activation by Sema5A mediates functional responses in plexin-B3-expressing cells (either fibroblasts, epithelial and primary endothelial cells). In addition, Sema5A can trigger the intracellular signalling of the hepatocyte growth factor/scatter factor receptor, Met, associated in a complex with plexin-B3. We thus conclude that Sema5A is able to elicit multiple functional responses through its receptor plexin-B3.  相似文献   

10.
Cytoskeletal reorganization, including reconstruction of actin fibers and microtubules, is essential for various biological processes, such as cell migration, proliferation and dendrite formation. We show here that methylophiopogonanone B (MOPB) induces cell morphological change via melanocyte dendrite retraction and stress fiber formation. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation and actin cytoskeletal reorganization, and activated Rho promotes dendrite retraction and stress fiber formation, we studied the effects of MOPB on the small GTPases using normal human epidermal melanocytes and HeLa cells. In in vitro binding assay, MOPB significantly increased GTP-Rho, but not GTP-Rac or GTP-CDC42. Furthermore, a Rho inhibitor, a Rho kinase inhibitor and a small GTPase inhibitor each blocked MOPB-induced stress fiber formation. The effect of MOPB on actin reorganization was blocked in a Rho dominant negative mutant. These results suggest MOPB acts via the Rho signaling pathway, and it may directly or indirectly activate Rho. Quantitative Western blot analysis indicated that MOPB also induced microtubule destabilization and tubulin depolymerization. Thus, MOPB appears to induce Rho activation, resulting in actin cytoskeletal reorganization, including dendrite retraction and stress fiber formation.  相似文献   

11.
Semaphorins are secreted and membrane bound proteins that regulate axon guidance through receptors Plexins and neuropilins. Plexin B1, the Semaphorin 4D receptor, is a recently described tumor suppressor protein for melanoma. We recently showed that Plexin B1 abrogates activation of the oncogenic receptor, c-Met, by its ligand, hepatocyte growth factor (HGF), in melanoma. We have now investigated the effect of Plexin B1 on integrin-dependent pp125(FAK) activation, and the small GTP-binding protein Rho, in melanoma. Integrin receptors and Rho play critical roles in melanoma progression, through regulation of migration, proliferation and apoptosis. We engineered two human melanoma cell lines expressing Plexin B1 and analyzed integrin-dependent migration, integrin-dependent pp125(FAK) activation, and Rho activity. Results show that Plexin B1 abrogates integrin-dependent migration and activation of pp125(FAK). We also show that Rho activity is significantly reduced in cells expressing Plexin B1, and that Plexin B1 suppresses HGF-dependent Rho activation.  相似文献   

12.
The ubiquitously expressed heterotrimeric guanine nucleotide-binding proteins (G-proteins) G12 and G13 have been shown to activate the small GTPase Rho. Rho stimulation leads to a rapid remodeling of the actin cytoskeleton and subsequent stress fiber formation. We investigated the involvement of G12 or G13 in stress fiber formation induced through a variety of Gq/G11-coupled receptors. Using fibroblast cell lines derived from wild-type and Galphaq/Galpha11-deficient mice, we show that agonist-dependent activation of the endogenous receptors for thrombin or lysophosphatidic acid and of the heterologously expressed bradykinin B2, vasopressin V1A, endothelin ETA, and serotonin 5-HT2C receptors induced stress fiber formation in either the presence or absence of Galphaq/Galpha11. Stress fiber assembly induced through the muscarinic M1 and the metabotropic glutamate subtype 1alpha receptors was dependent on Gq/G11 proteins. The activation of the Gq/G11-coupled endothelin ETB and angiotensin AT1A receptors failed to induce stress fiber formation. Lysophosphatidic acid, B2, and 5-HT2C receptor-mediated stress fiber formation was dependent on Galpha13 and involved epidermal growth factor (EGF) receptors, whereas thrombin, ETA, and V1A receptors induced stress fiber accumulation via Galpha12 in an EGF receptor-independent manner. Our data demonstrate that many Gq/G11-coupled receptors induce stress fiber assembly in the absence of Galphaq and Galpha11 and that this involves either a Galpha12 or a Galpha13/EGF receptor-mediated pathway.  相似文献   

13.
Small GTPases of the Rho family are crucial regulators of actin cytoskeleton rearrangements. Rho is activated by members of the Rho guanine-nucleotide exchange factor (GEF) family; however, mechanisms that regulate RhoGEFs are not well understood. This report demonstrates that PDZ-RhoGEF, a member of a subfamily of RhoGEFs that contain regulator of G protein signaling domains, is partially localized at or near the plasma membranes in 293T, COS-7, and Neuro2a cells, and this localization is coincident with cortical actin. Disruption of the cortical actin cytoskeleton in cells by using latrunculin B prevents the peri-plasma membrane localization of PDZ-RhoGEF. Coimmunoprecipitation and F-actin cosedimentation assays demonstrate that PDZ-RhoGEF binds to actin. Extensive deletion mutagenesis revealed the presence of a novel 25-amino acid sequence in PDZ-RhoGEF, located at amino acids 561-585, that is necessary and sufficient for localization to the actin cytoskeleton and interaction with actin. Last, PDZ-RhoGEF mutants that fail to interact with the actin cytoskeleton display enhanced Rho-dependent signaling compared with wild-type PDZ-RhoGEF. These results identify interaction with the actin cytoskeleton as a novel function for PDZ-RhoGEF, thus implicating actin interaction in organizing PDZ-RhoGEF signaling.  相似文献   

14.
We recently reported that Rho kinase is required for sustained ERK signaling and the consequent mid-G(1) phase induction of cyclin D1 in fibroblasts. The results presented here indicate that these Rho kinase effects are mediated by the formation of stress fibers and the consequent clustering of alpha5beta1 integrin. Mechanistically, alpha5beta1 signaling and stress fiber formation allowed for the sustained activation of MEK, and this effect was mediated upstream of Ras-GTP loading. Interestingly, disruption of stress fibers with ML-7 led to G(1) phase arrest while comparable disruption of stress fibers with Y27632 (an inhibitor of Rho kinase) or dominant-negative Rho kinase led to a more rapid progression through G(1) phase. Inhibition of either MLCK or Rho kinase blocked sustained ERK signaling, but only Rho kinase inhibition allowed for the induction of cyclin D1 and activation of cdk4 via Rac/Cdc42. The levels of cyclin E, cdk2, and their major inhibitors, p21(cip1) and p27(kip1), were not affected by inhibition of MLCK or Rho kinase. Overall, our results indicate that Rho kinase-dependent stress fiber formation is required for sustained activation of the MEK/ERK pathway and the mid-G(1) phase induction of cyclin D1, but not for other aspects of cdk4 or cdk2 activation. They also emphasize that G(1) phase cell cycle progression in fibroblasts does not require stress fibers if Rac/Cdc42 signaling is allowed to induce cyclin D1.  相似文献   

15.
The semaphorin 4D (Sema4D) receptor plexin-B1 constitutively interacts with particular Rho guanine nucleotide exchange factors (RhoGEFs) and thereby mediates Sema4D-induced RhoA activation, a process which involves the tyrosine phosphorylation of plexin-B1 by ErbB-2. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGEF activity. We show here that activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation creates docking sites for the SH2 domains of phospholipase Cγ (PLCγ). PLCγ is thereby recruited into the plexin-B1 receptor complex and via its SH3 domain activates the Rho guanine nucleotide exchange factor PDZ-RhoGEF. PLCγ-dependent RhoGEF activation is independent of its lipase activity. The recruitment of PLCγ has no effect on the R-Ras GTPase-activating protein activity of plexin-B1 but is required for Sema4D-induced axonal growth cone collapse as well as for the promigratory effects of Sema4D on cancer cells. These data demonstrate a novel nonenzymatic function of PLCγ as an important mechanism of plexin-mediated signaling which links tyrosine phosphorylation of plexin-B1 to the regulation of a RhoGEF protein and downstream cellular processes.Mammalian semaphorins were originally identified as axon guidance factors but are now recognized also as important regulators of morphogenesis and homeostasis in various organ systems, including the immune, cardiovascular, and renal systems (3-5, 7, 19, 23, 30, 35, 40, 56, 64, 76). Most effects of semaphorins are mediated by a group of large transmembrane proteins called plexins, of which four families exist in the mammalian system: plexin-A1 to -4, plexin-B1 to -3, plexin-C1, and plexin-D1 (60, 61). The four members of the plexin-A family in most cases require neuropilins as ligand binding partners to respond to semaphorins, whereas the three members of the plexin-B family are directly activated by semaphorins. While plexin-B1 binds Sema4D, plexin-B2 can be activated by Sema4C and Sema4D, and plexin-B3 has been shown to respond to Sema5A (31, 35).The activation of plexins by semaphorins initiates a variety of signaling processes, which involve several small GTPases of the Ras and Rho families (31, 34, 43). All plexin family members possess an R-Ras GTPase-activating protein (GAP) domain (36). Activated plexin-B1 and -A1 have been shown to also interact with other small GTPases, including GTP-bound Rac1 and RhoD as well as Rnd1, Rnd2, and Rnd3 (14, 37, 48, 63, 67, 68, 74). Different from other plexin families, the C terminus of B-family plexins contains a PDZ domain-binding motif which mediates a stable interaction with the guanine nucleotide exchange factors PDZ-RhoGEF and LARG (1, 15, 26, 39, 57). Activation of the plexin-B1/PDZ-RhoGEF complex by semaphorin 4D (Sema4D) results in RhoA activation downstream of plexin-B1 (15, 39, 57). Members of the plexin-B family also interact with and are phosphorylated by the receptor tyrosine kinases ErbB-2 and c-Met (12, 22, 58). ErbB-2-mediated phosphorylation of plexin-B1 is required for plexin-mediated RhoA activation and downstream cellular effects, including the promigratory effects of Sema4D on cancer cells and the induction of axonal growth cone collapse by Sema4D (58, 59). However, the molecular mechanisms linking ErbB-2-mediated phosphorylation of plexin-B1 to the regulation of RhoA activity and subsequent cellular effects are unknown.Here we report that upon activation by Sema4D, plexin-B1 becomes phosphorylated by ErbB-2 at particular tyrosine residues on its intracellular portion. These phosphorylated tyrosine residues serve as docking sites for the SH2 domains of PLCγ. PLCγ is thereby recruited into the plexin-B1 receptor complex and through its SH3 domain mediates RhoA activation and downstream cellular effects.  相似文献   

16.
A recently identified family of guanine nucleotide exchange factors for Rho that includes PDZ-RhoGEF, LARG, and p115RhoGEF exhibits a unique structural feature consisting in the presence of area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a structural motif by which heterotrimeric G protein alpha subunits of the Galpha(12) family can bind and regulate the activity of RhoGEFs. Hence, these newly discovered RGL domain-containing RhoGEFs provide a direct link from Galpha(12) and Galpha(13) to Rho. Recently available data suggest, however, that tyrosine kinases can regulate the ability of G protein-coupled receptors (GPCRs) to stimulate Rho, although the underlying molecular mechanisms are still unknown. Here, we found that the activation of thrombin receptors endogenously expressed in HEK-293T cells leads to a remarkable increase in the levels of GTP-bound Rho within 1 min (11-fold) and a more limited but sustained activation (4-fold) thereafter, which lasts even for several hours. Interestingly, tyrosine kinase inhibitors did not affect the early phase of Rho activation, immediately after thrombin addition, but diminished the levels of GTP-bound Rho during the delayed phase. As thrombin receptors stimulate focal adhesion kinase (FAK) potently, we explored whether this non-receptor tyrosine kinase participates in the activation of Rho by GPCRs. We obtained evidence that FAK can be activated by thrombin, Galpha(12), Galpha(13), and Galpha(q) through both Rho-dependent and Rho-independent mechanisms and that PDZ-RhoGEF and LARG can in turn be tyrosine-phosphorylated through FAK in response to thrombin, thereby enhancing the activation of Rho in vivo. These data indicate that FAK may act as a component of a positive feedback loop that results in the sustained activation of Rho by GPCRs, thus providing evidence of the existence of a novel biochemical route by which tyrosine kinases may regulate the activity of Rho through the tyrosine phosphorylation of RGL-containing RhoGEFs.  相似文献   

17.
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.  相似文献   

18.
Small GTP-binding proteins of the Rho family play a critical role in signal transduction. However, there is still very limited information on how they are activated by cell surface receptors. Here, we used a consensus sequence for Dbl domains of Rho guanine nucleotide exchange factors (GEFs) to search DNA data bases, and identified a novel human GEF for Rho-related GTPases harboring structural features indicative of its possible regulatory mechanism(s). This protein contained a tandem DH/PH domain closely related to those of Rho-specific GEFs, a PDZ domain, a proline-rich domain, and an area of homology to Lsc, p115-RhoGEF, and a Drosophila RhoGEF that was termed Lsc-homology (LH) domain. This novel molecule, designated PDZ-RhoGEF, activated biological and biochemical pathways specific for Rho, and activation of these pathways required an intact DH and PH domain. However, the PDZ domain was dispensable for these functions, and mutants lacking the LH domain were more active, suggesting a negative regulatory role for the LH domain. A search for additional molecules exhibiting an LH domain revealed a limited homology with the catalytic region of a newly identified GTPase-activating protein for heterotrimeric G proteins, RGS14. This prompted us to investigate whether PDZ-RhoGEF could interact with representative members of each G protein family. We found that PDZ-RhoGEF was able to form, in vivo, stable complexes with two members of the Galpha12 family, Galpha12 and Galpha13, and that this interaction was mediated by the LH domain. Furthermore, we obtained evidence to suggest that PDZ-RhoGEF mediates the activation of Rho by Galpha12 and Galpha13. Together, these findings suggest the existence of a novel mechanism whereby the large family of cell surface receptors that transmit signals through heterotrimeric G proteins activate Rho-dependent pathways: by stimulating the activity of members of the Galpha12 family which, in turn, activate an exchange factor acting on Rho.  相似文献   

19.
20.
The Rho GTPases Rac1 and Cdc42 have been implicated in the regulation of axon outgrowth and guidance. However, the downstream effector pathways through which these GTPases exert their effects on axon development are not well characterized. Here, we report that axon outgrowth defects within specific subsets of motoneurons expressing constitutively active Drosophila Rac1 largely persist even with the addition of an effector-loop mutation to Rac1 that disrupts its ability to bind to p21-activated kinase (Pak) and other Cdc42/Rac1 interactive-binding (CRIB)-motif effector proteins. While hyperactivation of Pak itself does not lead to axon outgrowth defects as when Rac1 is constitutively activated, live analysis reveals that it can alter filopodial activity within specific subsets of neurons similar to constitutive activation of Cdc42. Moreover, we show that the axon guidance defects induced by constitutive activation of Cdc42 persist even in the absence of Pak activity. Our results suggest that (1) Rac1 controls axon outgrowth through downstream effector pathways distinct from Pak, (2) Cdc42 controls axon guidance through both Pak and other CRIB effectors, and (3) Pak's primary contribution to in vivo axon development is to regulate filopodial dynamics that influence growth cone guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号