首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Intrathymic positive selection matches CD4-CD8 lineage differentiation to MHC specificity. However, it is unclear whether MHC signals induce lineage choice or simply select thymocytes of the appropriate lineage. To investigate this issue, we assessed thymocytes undergoing positive selection for expression of the CD8 lineage markers perforin and Runx3. Using both population-based and single-cell RT-PCR analyses, we found large subsets of MHC class II (MHC-II)-signaled thymocytes expressing these genes within the CD4+ 8+ and CD4+ 8(int), but not the CD4+ 8- populations of signaling competent mice. This indicates that MHC-II signals normally fail to impose CD4 differentiation and further implies that the number of mature CD8 single-positive (SP) thymocytes greatly underestimates CD8 lineage choice. We next examined whether MHC-II-restricted CD4+ 8- thymocytes remain competent to initiate CD8 lineage gene expression. In mice in which expression of the tyrosine kinase Zap70 and thereby TCR signaling were impaired selectively in SP thymocytes, MHC-II-signaled CD4+ 8- thymocytes expressed perforin and Runx3 and failed to up-regulate the CD4 marker Thpok. This indicated that impairing TCR signals at the CD4 SP stage switched gene expression patterns from CD4- to CD8-lineage specific. We conclude from these findings that MHC-II-signaled thymocytes remain competent to initiate CD8-specific gene expression even after CD8 down-regulation and that CD4 lineage differentiation is not fixed before the CD4 SP stage.  相似文献   

3.
4.
5.
It is generally accepted that the avidity of TCR for self Ag/MHC determines the fate of immature thymocytes. However, the contribution of the quantity of TCR signal to T cell selection has not been well established, particularly in vivo. To address this issue, we analyzed DO-TCR transgenic CD3zeta-deficient (DO-Tg/zetaKO) mice in which T cells have a reduced TCR on the cell surface. In DO-Tg/zetaKO mice, very few CD4 single positive (SP) thymocytes developed, indicating that the decrease in TCR signaling resulted in a failure of positive selection of DO-Tg thymocytes. Administration of the peptide Ag to DO-Tg/zetaKO mice resulted in the generation of functional CD4 SP mature thymocytes in a dose-dependent manner, and, unexpectedly, DO-Tg CD8 SP cells emerged at lower doses of Ag. TCR signal-dependent, sequential commitment from CD8(+) SP to CD4(+) SP was also shown in a class I-restricted TCR-Tg system. These in vivo analyses demonstrate that the quantity of TCR signal directly determines positive and negative selection, and further suggest that weak signal directs positively selected T cells to CD8 lineage and stronger signal to CD4 lineage.  相似文献   

6.
Previous evidence suggested that the hemopoietic-specific nuclear factor Ikaros regulates TCR signaling thresholds in mature T cells. In this study, we test the hypothesis that Ikaros also sets TCR signaling thresholds to regulate selection events and CD4 vs CD8 lineage determination in developing thymocytes. Ikaros null mice were crossed to three lines of TCR-transgenic mice, and positive selection, negative selection, and CD4 vs CD8 lineage decisions were analyzed. Mice expressing a polyclonal repertoire or a MHC class II-restricted TCR transgene exhibited enhanced positive selection toward the CD4 lineage. Moreover, in the absence of Ikaros, CD4 development can occur with decreased thresholds of TCR signaling. In addition, CD4 single-positive thymocytes were detected in MHC class I-restricted TCR-transgenic Ikaros null mice. To assess the role of Ikaros in negative selection, we analyzed deletion of T cells induced by conventional Ag or by endogenous superantigen. Surprisingly, negative selection was impaired in Ikaros null thymocytes despite evidence of high levels of TCR signal and no intrinsic defect in apoptosis ex vivo. To our knowledge, these data identify Ikaros as the first nuclear factor that plays a critical role in regulating negative selection as well as CD4 vs CD8 lineage decisions during positive selection.  相似文献   

7.
The Notch signaling pathway plays an important role in the early steps of T cell development and in the generation of T cell tumors, but its role in the CD4 vs CD8 lineage decision is controversial. Notch1 is not essential for CD4 or CD8 T cell development; however, there are suggestions that multiple Notch family members may act in a redundant fashion during thymic development. In theory, expressing a constitutively activated form of Notch in CD4(+)CD8(+) thymocytes could provide clues about the normal role of Notch in developing CD4 and CD8 T cells. Unfortunately, two different studies of transgenic mice expressing activated forms of Notch1 (Notch1IC) led to conflicting conclusions. In this study, we re-examine the effect of the two Notch1IC transgenes on thymocyte development. We find that both Notch1IC transgenic lines display a decrease in CD4 single positive (SP) thymocytes and a corresponding increase in CD8 SP thymocytes. The enhanced development of CD8 SP thymocytes is dependent on either class I or II MHC. Thus, data from two different Notch1IC transgenic lines indicate that Notch activity promotes CD8 and inhibits CD4 SP development. We suggest that the discrepancies in previous reports of Notch1IC transgenic mice are due to differences in the propensity of the two different transgenic lines to develop tumors.  相似文献   

8.
9.
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.  相似文献   

10.
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development.  相似文献   

11.
Positive and negative selection of thymocytes is determined by the specificity of the TCR and signaling through its associated molecules. We have studied selection of thymocytes bearing a MHC class II-restricted TCR using fetal thymic organ culture. This system allows the addition of peptides to the already diverse panoply of endogenous peptide ligands and is useful for analyzing ligand-specific negative selection of CD4 single positive (CD4SP) thymocytes. The data reveal that the ability of a given ligand to mediate negative selection is related to its dissociation rate from the TCR. We find that negative selection is very sensitive, and only the weakest ligand that we can identify fails to induce negative selection. None of the numerous peptides tested were able to induce an increase in CD4SP thymocytes. In addition, the ligands that induce negative selection of CD4SP thymocytes also cause an increase in numbers of CD8SP thymocytes bearing high levels of the class II-restricted TCR. Although these cells have a cell surface phenotype consistent with positive selection, they most likely represent cells in the process of negative selection. Further analysis reveals that these cells are not induced by these ligands in intact adult animals and that their induction is probably only revealed in the organ culture system.  相似文献   

12.
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.  相似文献   

13.
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.  相似文献   

14.
Developing thymocytes are positively selected if they respond to self-MHC-peptide complexes, yet mature T cells are not activated by those same self-complexes. To avoid autoimmunity, positive selection must be followed by a period of maturation when the cellular response to TCR signals is altered. The mechanisms that mediate this postselection developmental tuning remain largely unknown. Specifically, it is unknown whether developmental tuning is a preprogrammed outcome of positive selection or if it is sensitive to ongoing interactions between the thymocyte and the thymic stroma. We probed the requirement for MHC class II-TCR interactions in postselection maturation by studying single positive (SP) CD4 thymocytes from K14/A(beta)(b) mice, in which CD4 T cells cannot interact with MHC class II in the thymic medulla. We report here that SP CD4 thymocytes must receive MHC class II signals to avoid hyperactive responses to TCR signals. This hyperactivity correlates with decreased expression of CD5; however, developmental tuning can occur independently of CD5, correlating instead with differences in the distribution of Lck. Thus, the maturation of postselection SP CD4 thymocytes is an active process mediated by ongoing interactions between the T cell and MHC class II molecules. This represents a novel mechanism by which the thymic medulla prevents autoreactivity.  相似文献   

15.
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8 alpha') can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8 alpha and CD8 alpha' restores CD8 T cell development in CD8 alpha mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8 alpha' favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.  相似文献   

16.
It has been reported that the three-dimensional structure of thymic epithelial cells (TECs) is responsible for thymic positive selection but that this ability disappears when TECs are cultured in monolayer. These results have supported the hypothesis that certain TEC-specific molecules are extinguished during monolayer culture. In this study, using MHC class II-restricted T-cell receptor transgenic mice, we demonstrated that preselected CD4(+)8(+) (DP) thymocytes were inhibited from developing into CD4(+)8(-) (CD4SP) cells in reaggregate thymus organ culture with monolayer-cultured TECs, but this inhibition was removed when TECs were cultured in monolayer with protein synthesis inhibitor or when the cultured TECs were treated with fixative. These results seem to be inconsistent with the previous hypothesis and indicate that monolayer culture allows TECs to retain the surface molecules necessary for positive selection but interferes with their function, which must be sustained for three dimensional structure.  相似文献   

17.
18.
The molecular events triggered by MHC recognition and how they lead to the emergence of mature CD4 and CD8 lineage thymocytes are not yet understood. To address these questions, we have examined what signals are necessary to drive the development of CD8 lineage thymocytes in TCRalpha(-) mice in which TCR/MHC engagement cannot occur. We find that the combination of constitutive Notch activity and constitutive Bcl-2 expression are necessary and sufficient to allow the appearance of mature CD8 lineage thymocytes in TCRalpha(-) mice. In addition, Notch activity alone in TCRalpha(-) mice can induce the up-regulation of HES1, suggesting that thymocytes are competent to respond to Notch signaling in the absence of MHC recognition. These data indicate that survival and lineage commitment represent distinct, parallel pathways that occur as a consequence of MHC recognition, both of which are necessary for the development of mature CD8 lineage T cells.  相似文献   

19.
20.
An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号