首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complementarity-based algorithms for the selection of reserve networks emphasize the need to represent biodiversity features efficiently, but this may not be sufficient to maintain those features in the long term. Here, we use data from the Common Birds Census in Britain as an exemplar data set to determine guidelines for the selection of reserve networks which are more robust to temporal turnover in features. The extinction patterns found over the 1981-1991 interval suggest that two such guidelines are to represent species in the best sites where they occur (higher local abundance) and to give priority to the rarer species. We tested five reserve selection strategies, one which finds the minimum representation set and others which incorporate the first or both guidelines proposed. Strategies were tested in terms of their efficiency (inversely related to the total area selected) and effectiveness (inversely related to the percentage of species lost) using data on eight pairs of ten-year intervals. The minimum set strategy was always the most efficient, but suffered higher species loss than the others, suggesting that there is a trade-off between efficiency and effectiveness. A desirable compromise can be achieved by embedding the concerns about the long-term maintenance of the biodiversity features of interest in the complementarity-based algorithms.  相似文献   

2.
Nestedness, biogeographic theory, and the design of nature reserves   总被引:12,自引:0,他引:12  
I examine the relationship between nested distributional patterns and the degree to which several small reserves will contain more species than would a single reserve of equal total area (SLOSS). Nestedness is a common property of species distributions on real and habitat islands. However, there is considerable variation in nestedness among species distributions, some of which is related to the physical and biological background of the archipelagoes. Nestedness does not vary according to the taxonomic group examined (with the exception of aquatic invertebrates). Nestedness does vary between real and habitat islands (with aquatic invertebrates excluded), but not between oceanic and land-bridge islands. The more a biota is nested, the more likely it is that a single large reserve would preserve more species. However, nestedness is a rather poor predictor of SLOSS, as the vast majority of archipelagoes support a strategy of several small reserves, even though almost all of them are significantly nested. Nestedness says little about optimal reserve design and management, and appears to be a weak conservation tool. Received: 30 May 1995 / Accepted: 1 April 1997  相似文献   

3.
We examine the logic of designing nature reserves to understand better how to integrate the concepts of representativeness and persistence. Simple models of viability are used to evaluate how the expected number of species in the reserve system changes with variation in the risk of extinction among species, their rate of occurrence, and the distribution of species. The optimal size of individual reserves increased with the mean and variance of the probability of extinction among species and with the rate at which the risk of extinction declines with the cost of each reserve. In contrast, the rate of occurrence of species within reserves and their rate of accumulation with increasing reserve area had a relatively minor influence on the optimal size of reserves. Patterns of endemism were most important for the location of reserves. Including differences among species in the analysis reduced the optimal number of individual reserves (and increased the size of each) when operating under a fixed budget compared with reserve designs based on single species. A case study in the city of Melbourne, Australia, demonstrates the conservation value of small (approximately 1 ha) grassland reserves and the underrepresentation of Melbourne's volcanic plains in the region's conservation network.  相似文献   

4.
自然保护区空间特征和地块最优化选择方法   总被引:3,自引:0,他引:3  
王宜成 《生态学报》2011,31(14):4094-4106
自然保护区是保护物种和生态系统的有效方式,用于建立自然保护区的资源却是稀缺的,这就提出这样的问题:1)自然保护区在空间上应具有什么特征才是有效的;2)如何从许多备选地块中选择一部分组成自然保护区对稀缺资源进行最优化分配。为促进物种生存繁衍,在地块选择时应考虑保护区空间特征。这篇文章综述了该领域最近的研究进展,重点介绍了结合各种空间特征的保护区地块最优化选择模型。介绍了4个主要的空间特征:1)连续,2)间隔和距离,3)边界和集约,4)面积以及核心区和缓冲区。以前用启发式算法求解这些问题,但研究已显示该法不能保证资源的最优化分配。空间特征也可用线性整数规划模拟,用最优化软件求得最优解。目前的线性整数规划模型和软件还不能有效解决大型的保护区地块选择问题,计算效率易成为实际应用的瓶颈。文章概括了我国目前自然保护区设计领域的研究状况和面临的问题,最后讨论了该领域新的研究方向。  相似文献   

5.
The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. This study examines the impact of the creation of marine protected areas, from both economic and biological perspectives. The consequences of reserve establishment on the long-run equilibrium fish biomass and fishery catch levels are evaluated. We include reserve size as control variable to maximize catch at equilibrium. A continuous time model is used to simulate the effects of reserve size on fishing catch. Fish movements between the sites is assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the fishing effort. Simulation results suggest that the establishment of a protected marine reserve will always lead to an increase in total fish biomass, an optimal size of a marine reserve can achieve to maximize the catch at equilibrium.  相似文献   

6.
Given the limited resources available for conservation, it is important that the areas to preserve are selected in a cost effective manner. However, the cost effectiveness of the surrogate species strategy (the use of information on one or more species to identify areas of value for other species for which there is no, or more limited, available information) has seldom been evaluated.In this study, we investigate the opportunity cost of setting aside breeding sites of two forest raptor species (the surrogate species) by evaluating their individual and combined contribution to preserve diversity of polypores (wood-decaying fungi) and birds against the contributions of previously established nature reserves. We use numeric optimization models to compare different reserve selection strategies.Site selection based on nest sites of the dominant raptor species was more cost-effective than strategies using sites of the subordinate species or those processes previously used to select nature reserves in Finland. The inclusion of both raptor species in the reserve selection model further improved its performance relative to other approaches. This indicates that the means by which Finnish reserves are selected could be enhanced by including the breeding sites of these, and maybe other species, among the criteria used to select reserves in the future.These results show that information on charismatic and well-surveyed species could be a cost-efficient add-on to help enhance conservation endeavours. Where there is inter-specific competition for biodiverse sites, and using multiple species is costly, basing reserve selection primarily on breeding sites of a dominant species may be the best strategy. However, further work is required to establish the extent to which dominant species are typically better indicators of conservation relevance.  相似文献   

7.
Aim Species communities often exhibit nestedness, the species found in species‐poor sites representing subsets of richer ones. In the Netherlands, where intensification of land use has led to severe fragmentation of nature, we examined the degree of nestedness in the distribution of Orthoptera species. An assessment was made of how environmental conditions and species life‐history traits are related to this pattern, and how variation in sampling intensity across sites may influence the observed degree of nestedness. Location The analysis includes a total of 178 semi‐natural sites in the Pleistocene sand region of the Netherlands. Methods A matrix recording the presence or absence of all Orthoptera species in each site was compiled using atlas data. Additionally, separate matrices were constructed for the species of suborders Ensifera and Caelifera. The degree of nestedness was measured using the binmatnest calculator. binmatnest uses an algorithm to sort the matrices to maximal nestedness. We used Spearman’s rank correlations to evaluate whether sites were sorted by area, isolation or habitat heterogeneity, and whether species were sorted by their dispersal ability, rate of development or degree of habitat specificity. Results We found the Orthoptera assemblages to be significantly nested. The rank correlation between site order and sampling intensity was high. The degree of nestedness was lower, but remained significant when under‐ and over‐sampled sites were excluded from the analysis. Site order was strongly correlated with both size of sample site and number of habitat types per site. Rank correlations showed that species were probably ordered by variation in habitat specificity, rather than by variation in dispersal capacity or rate of development of the species. Main conclusions Variation in sampling intensity among sites had a strong impact on the observed degree of nestedness. Nestedness in habitats may underlie the observed nestedness within the Orthoptera assemblages. Habitat heterogeneity is closely related to site area, which suggests that several large sites should be preserved, rather than many small sites. Furthermore, the results corroborate a focus of nature conservation policy on sites where rare species occur, as long as the full spectrum of habitat conditions and underlying ecological processes is secured.  相似文献   

8.

Aim

The number of studies investigating the nestedness and turnover components of beta diversity has increased substantially, but our general understanding of the drivers of turnover and nestedness remains elusive. Here, we examined the effects of species traits, spatial extent, latitude and ecosystem type on the nestedness and turnover components of beta diversity.

Location

Global.

Time period

1968–2017.

Major taxa studied

From bacteria to mammals.

Methods

From the 99 studies that partition total beta diversity into its turnover and nestedness components, we assembled 269 and 259 data points for the pairwise and multiple site beta‐diversity metrics, respectively. Our data covered a broad variation in species dispersal type, body size and trophic position. The data were from freshwater, marine and terrestrial realms, and encompassed geographical areas from the tropics to near polar regions. We used linear modelling as a meta‐regression tool to analyse the data.

Results

Pairwise turnover, multiple site turnover and total beta diversity all decreased significantly with latitude. In contrast, multiple site nestedness showed a positive relationship with latitude. Beta‐diversity components did not generally differ among the realms. The turnover component and total beta diversity increased with spatial extent, whereas nestedness was scale invariant for pairwise metrics. Multiple site beta‐diversity components did not vary with spatial extent. Surprisingly, passively dispersed organisms had lower turnover and total beta diversity than flying organisms. Body size showed a relatively weak relationship with beta diversity but had important interactions with trophic position, thus also affecting beta diversity via interactive effects. Producers had significantly higher average pairwise turnover and total beta diversity than carnivores.

Main conclusions

The present results provide evidence that species turnover, being consistently the larger component of total beta diversity, and nestedness are related to the latitude of the study area and intrinsic organismal features. We showed that two beta‐diversity components had generally opposing patterns with regard to latitude. We highlight that beta‐diversity partition may give additional insights into the underlying causes of spatial variability in biotic communities compared with total beta diversity alone.  相似文献   

9.
The optimal size of nature reserves has been debated for some time. Although edge and core habitats are often recognized, it is commonly assumed in theory and in studies of a particular habitat type that reserves or patches of different sizes have similar habitat structure. However, for older, highly fragmented landscapes it has been suggested that small areas are of conservation interest as high-quality remnants, whereas large areas are more degraded. We studied 49 randomly selected forest reserves in the size range 5–230 ha (typical for many highly fragmented landscapes) and 3653 sites of key habitat (unprotected deciduous broadleaf forest). Structures in forest that are generally correlated with value for biodiversity were measured, and reserve objectives were examined from declaration texts. Both the density of large trees and the density of dead wood (snags, logs) decreased with increasing reserve size. The mean size of identified key habitats was very small (1.6 ha). A botanical objective for establishment of reserves was more frequently used for smaller reserves. In contrast, cultural and especially recreational objectives were more commonly used when larger reserves were established, suggesting higher values for recreation in these reserves. For vascular plants, birds and beetles, a literature review indicated that small forest patches do not contain impoverished communities, but are often rich (per unit of area). Small reserves and key habitats have several disadvantages, but they are probably important components of reserve networks for biodiversity in highly fragmented landscapes.  相似文献   

10.
Aims The nested subset pattern has been widely studied in the last 20 years, and recent syntheses have challenged the prevalence of this pattern in nature. We examined the degree of nestedness, its temporal variability and its environmental correlates in stream insects of a boreal drainage system. We also examined differences between nested and idiosyncratic species in site occupancy, niche position and niche breadth. Location Koutajoki drainage basin in northern Finland. Methods We used (i) nestedness analyses with three null models for testing the significance of nestedness; (ii) Spearman rank correlation to examine the correlates of nestedness; (iii) outlying mean index analysis to analyse the niche characteristics of species; (iv) and t‐test to examine differences in niche breadth, niche position and site occupancy of idiosyncratic and other nested species. Results Stream insect assemblages were significantly nested in each of the three study years. The maximally packed matrices were significantly nested according to the nestedness calculator based on null models I (species frequencies and site richness equiprobable) and II (species frequencies fixed and site richness equiprobable), but non‐significant based on a conservative null model III (species frequencies and site richness fixed to those of the observed matrix). The most important correlate of nestedness was stream size, whereas isolation, productivity (total phosphorus) and habitat heterogeneity exhibited non‐significant relationship with nestedness. Idiosyncratic species occurred, on average, at more sites than nested species, mirroring the restricted distributions of several nested species that were inclined towards species‐rich sites. Idiosyncratic and nested species also differed in niche position and niche breadth, with idiosyncratic species having, on average, less marginal niche positions and wider niches than nested species. Main conclusions Stream size correlated with nestedness, possibly because small streams were inhabited only by species able to persist under, or colonize shortly after, disturbances, while most species could occur at larger sites where disturbances are less severe. From the conservation perspective, our findings suggest that stream size really matters, given that sites with high species richness and many rare species are more likely to occur in larger streams. However, also the requirements of idiosyncratic species should be accommodated in conservation planning.  相似文献   

11.
A comparative analysis of nested subset patterns of species composition   总被引:2,自引:0,他引:2  
We present a broad comparative assessment of nested subsets in species composition among ecological communities. We assembled presence-absence data from a broad range of taxa, geographic regions, and spatial scales; and subjected this collection of datasets to common analyses, including a variety of metrics for measuring nestedness and null hypotheses against which to evaluate them. Here we identify ecological patterns in the prevalence and strength of nested subset structure, and assess differences and biases among the available methodologies. In all, we compiled 279 presence-absence matrices, of which 163 do not overlap in their coverage of species and sites. The survey includes studies on vertebrates, arthropods, mollusks, plants, and other taxa; from north temperate, tropical, and south temperate latitudes. Our results were as follows. Statistically significant nestedness was common. Assemblages from landbridge archipelagos were strongly nested, and immigration experiments were least nested. This adds further empirical support to the hypothesis that extinction plays a major role in producing nested structure. Nestedness was positively correlated with the ratio of the areas of the largest and smallest sites, suggesting that the range in area of sites affects nestedness. Taxonomic differences in nestedness were weak. Higher taxonomic levels showed stronger nesting than their constituent lower taxa. We observed no effect of distance of isolation on nestedness; nor any effects of latitude. With regard to methodology, the metrics Nc and Ut yielded similar results, although Nc proved slightly more flexible in use, and deals differently with tied sites. Similarities also exist in the behavior of N0 (“N”) and Up, and between N1 and Ua. Standardized nestedness metrics were mostly insensitive to matrix size, and were useful in comparative analyses among presence-absence matrices. Most metrics were affected by the proportion of presences in the matrix. All analyses of nestedness, therefore, should test for bias due to matrix fill. We suggest that the factors controlling nested subset structure can be thought of as four filters that species pass to occur at a site: a sampling filter, a distance filter, a habitat filter, and an area filter – and three constraints on community homogeneity: evolutionary history, recent history, and spatial variation in the environment. The scale of examination can also have important effects on the degree of nestedness observed. Received: 13 September 1996 / Accepted: 16 September 1997  相似文献   

12.
Alternatives to species-level identification have been advocated as one solution to the problem of selecting marine reserves with limited information on the distribution of marine biodiversity.This study evaluated the effects on selection of candidate sites for marine reserves from using the higher-taxon approach as a surrogate for species-level identification of intertidal molluscs and rocky reef fishes. These effects were evaluated by determining the percentage of species included in candidate reserves identified from genus-, family- and order-level data by a complementarity-based reserve selection algorithm, and by testing for correlations between the irreplaceability values of locations. Candidate reserves identified from genus- and family-level data of intertidal molluscs included a similar percentage of all species as the reserves identified from species-level data. Candidate reserves selected from genus- and family-level data of rocky reef fishes included, respectively, 3–7% and 14–23% fewer species than reserves selected from species-level data. When the reserve identification process was constrained by a practical planning limit (a maximum of 20% locations able to be reserved) the reserves selected from genus- and family-level data of intertidal molluscs, and genus-level data of rocky reef fishes, included a similar percentage of species as the reserves identified from species-level data. Irreplaceability values of locations for species, genera and families of intertidal molluscs were highly correlated, and irreplaceability values of locations for species and genera of rocky reef fishes were highly correlated. This study suggests that genus- and family-level data for intertidal molluscs, and genus-level data for rocky reef fishes, are suitable surrogates for species in the identification of candidate sites for marine reserves.  相似文献   

13.
We examined the use of Landsat multispectral scanner (MSS) data to provide preliminary information on broad vegetation types present within nature reserves in the wheatbelt region of Western Australia. We analysed Landsat data for an area of natural vegetation for which ground survey and aerial photographic data are available. We used canonical variate analysis to examine the degree of spectral separation between training sites selected in the main structural vegetation types. The training classes were then grouped into spectral classes and an allocation procedure used to map the pixels in the reserve into these classes. The analysis provided a good correspondence between spectral classes and broad vegetation types recognised from aerial photography, but did not discriminate between differences in dominant species (e.g. between different types of Eucalypt woodland). The classification derived from the study reserve was then applied successfully to two nearby reserves, indicating that the data can be used to provide initial information on the broad vegetation types present in wheatbelt reserves, although it is not suitable for finer resolution studies.Abbreviation MSS = Multi-spectral scanner  相似文献   

14.
Protected areas are crucial for Amazonian nature conservation. Many Amazonian reserves have been selected systematically to achieve biodiversity representativeness. We review the role natural-scientific understanding has played in reserve selection, and evaluate the theoretical potential of the existing reserves to cover a complete sample of the species diversity of the Amazonian rainforest biome. In total, 108 reserves (604,832 km2) are treated as strictly protected and Amazonian; 87 of these can be seen as systematically selected to sample species diversity (75.3% of total area). Because direct knowledge on all species distributions is unavailable, surrogates have been used to select reserves: direct information on some species distributions (15 reserves, 14.8% of total area); species distribution patterns predicted on the basis of conceptual models, mainly the Pleistocene refuge hypothesis, (5/10.3%); environmental units (46/27.3%); or a combination of distribution patterns and environmental units (21/22.9%). None of these surrogates are reliable: direct information on species distributions is inadequate; the Pleistocene refuge hypothesis is highly controversial; and environmental classifications do not capture all relevant ecological variation, and their relevance for species distribution patterns is undocumented. Hence, Amazonian reserves cannot be safely assumed to capture all Amazonian species. To improve the situation, transparency and an active dialogue with the scientific community should be integral to conservation planning. We suggest that the best currently available approach for sampling Amazonian species diversity in reserve selection is to simultaneously inventory indicator plant species and climatic and geological conditions, and to combine field studies with remote sensing.  相似文献   

15.
This study is an exercise to check the efficiency of the existing reserve system, and to show how systematic conservation planning—using information available and the complementarity concept—can improve the basis for decisions and minimize costs. We verified the performance, in number of cells and primate species representation, of the existing Atlantic Forest (Brazil) reserve network with a quarter-degree resolution grid, with 1,884 cells. We used occurrence data of 20 endemic primate species, and the maps of 237 existing reserves. Reserve networks were selected to represent primate species first considering no pre-existing reserves in Atlantic Forest, and then, considering the existing reserve system, taking into account the minimum area for viable population of the larger species (Northern muriqui Brachyteles hypoxanthus). Reserve selection was carried out using the complementarity concept implemented by a simulated annealing algorithm. Primate species representation (at least one occurrence in the network) could be achieved with 8% of the existing reserve system (nine cells in relation to the 120 in the existing reserve system). We found that today’s reserve system represents 89% of endemic primate species, excluding the species Coimbra Filho’s titi monkey (Callicebus coimbrai) and Marcgraf’s capuchin (Cebus flavius). The networks selected without considering existing reserves contained nine cells. The networks selected considering existing reserves (120 cells), had two new cells necessary to represent all the primates. This does not mean that a viable alternative is to start from zero (i.e., nonexistent reserves). Identifying critical supplementary areas using biodiversity information to fill the gaps and then starting “conservation in practice” in these areas should be priorities.  相似文献   

16.
基于熵权的珠江三角洲自然保护区综合评价   总被引:3,自引:0,他引:3  
张林英  徐颂军 《生态学报》2011,31(18):5341-5350
运用熵权法对珠江三角洲自然保护区进行了综合评价。结果表明:(1)48个样本的保护区中7个为高水平,30个为较高水平,10个为一般,1个较差。从总体水平上看,虽然具有一部分较高水平的保护区,但珠江三角洲的保护区建设水平存在明显的差异,深圳、中山、佛山等地亟待建立新的保护区加以补充;(2)保护区的综合水平与面积具有明显的相关关系,建立了综合水平与面积之间的回归模型,并进一步求出珠江三角洲生态类型自然保护区理论上的最适宜面积;(3)区域保护区综合水平的提高与最大面积指数正相关,区域可以通过建设面积相对较大的优质保护区成为区域生态增长极,通过物种的交流和环境影响拉动其它保护区的发展,但区域范围内保护区之间面积差异不能太大;(4)自然干扰对沿海及岛屿类型的保护区综合水平影响相对较大。  相似文献   

17.
L. Yiming  J. Niemelä  L. Dianmo 《Oecologia》1998,113(4):557-564
Because of their poor dispersal ability, amphibians are well suited for testing the selective extinction theory on islands. Amphibian fauna in the Zhoushan archipelago, China, exhibit a high level of nestedness (C = 0.893), and the species number is lower on islands than on similar sized areas on the mainland. No correlation was found between island-specific species richness and the nearest distance from a larger island, distance from the mainland or density of human population. These results suggest that no amphibian colonisation has occurred in the archipelago since island isolation 7000–9000 years ago. Furthermore, the results imply that selective extinction contributes to the nestedness of amphibians in the Zhoushan archipelago. The incidence of a species on the islands is significantly correlated with log area of the smallest island occupied by the species and the number of provinces on the Chinese mainland in which the species occur. However, there is no correlation with average body length of adults and island occurrence. It is concluded that (1) the area of the smallest island occupied by a species is a good estimate of the minimum area for a viable population of the species and a good predictor of species incidence on islands, (2) species with a restricted distribution range are more vulnerable to extinction from islands than those with a wide distribution range and (3) the effect of body size on occurrence on the islands is uncertain, and may be specific to the archipelago and taxa studied. The observed nestedness of amphibian assemblages has two implications for conservation: (1) not only can all the species found in several small reserves be found on a large reserve of the same total size, but additional species can be found on the single large reserve; (2) for a reserve to maintain viable populations of all species in a region it should be at least as large as the smallest island occupied by the most vulnerable species. Received: 16 December 1996 / Accepted: 22 September 1997  相似文献   

18.
19.
Frick WF  Hayes JP  Heady PA 《Oecologia》2009,158(4):687-697
Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.  相似文献   

20.
On the meaning and measurement of nestedness of species assemblages   总被引:13,自引:0,他引:13  
Nestedness of species assemblages occurs when thebiotas of sites with lower numbers of species tend to be subsets of the biotas at richer sites. We develop new quantitative and statistical techniques for measuring, testing, and comparing nestedness, and apply these methods to data from the literature. Significantly nonrandom nestedness was present in all 27 assemblages examined, and tended to be stronger in systems dominated by extinction, such as landbridge islands. Sets of assemblages that were very strongly nested were more likely to have greater species richness on one or a few large sites than on several smaller sites of equivalent total area — that is, to fall toward the single large side of the Single Large Or Several Small (SLOSS) continuum. Our analysis indicates that nestedness, when quantified as a single number for a presence-absence matrix, measures community-wide differences in incidence (the frequency of occurrence or distribution of species). Factors that lead to consistent differences among species in immigration or extinction rates cause strong patterns of nestedness of species assemblages. Nestedness is negatively related to beta diversity: nestedness is low when beta diversity is high, and vice versa. Conservation managers will thus seek to minimize nestedness and the development of nested structure in systems of nature reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号