首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycolytic enzyme 6-phosphofructokinase (EC 2.7.1.11) was studied in adult and fetal type II pneumocytes which had been isolated from rat lung at different days of development. In addition, the activities of the enzymes hexokinase (EC 2.7.1.1), enolase (EC 4.2.1.11) and pyruvate kinase (EC 2.7.1.40) were assayed. The specific activities of the latter enzymes decrease during perinatal development and reach about adult values shortly after birth. In contrast, 6-phosphofructokinase activity increases slightly until 2 days before birth, and drops sharply afterwards. The 6-phosphofructokinase subunit composition was determined in fetal and adult type II cells. The ratio of the three subunits of 6-phosphofructokinase in type II cells isolated on fetal days 19 and 21 (term is at day 22) and in adult type II cells was identical: the three subunits were present in a ratio of 68: 14: 18 for types L, M and C, respectively. In addition, we investigated some regulatory properties of 6-phosphofructokinase from alveolar type II cells. 6-Phosphofructokinase from alveolar type II cells is strongly inhibited by increasing MgATP concentrations. This inhibition is reflected by an increase in the S0.5 for fructose 6-phosphate. Fructose 2,6-bisphosphate stimulates alveolar type II 6-phosphofructokinase. Half-maximal stimulation occurs at 1.6 and 2.0 microM fructose 2,6-bisphosphate for fetal and adult type II cells, respectively. The level of the most potent positive effector of 6-phosphofructokinase, fructose 2,6-bisphosphate, was also determined. The level of the hexose bisphosphate decreases during prenatal development; however, the level in the adult type II cells is considerably lower. The concentration of fructose 2,6-bisphosphate appears to be sufficient to fully activate 6-phosphofructokinase both in fetal and adult type II cells.  相似文献   

2.

Background

LysoTracker Green DND-26 is a fluorescent dye that stains acidic compartments in live cells and has been shown to selectively accumulate in lamellar bodies in alveolar type II (AT2) cells in the lung. The aim of this study was to determine whether the accumulation of LysoTracker in lamellar bodies can be used to isolate viable AT2 cells by flow cytometry and track their differentiation in live-cell culture by microscopy.

Methods

Mouse lung cells were sorted on the basis of CD45negCD31negEpCAMposLysoTrackerpos expression and characterized by immunostaining for SP-C and cultured in a three-dimensional epithelial colony-forming unit (CFU-Epi) assay. To track AT2 cell differentiation, lung epithelial stem and progenitor cells were cultured in a CFU-Epi assay with LysoTracker-supplemented media.

Results

The purity of sorted AT2 cells as determined by SP-C staining was 97.4% and viability was 85.3%. LysoTrackerpos AT2 cells generated SP-Cpos alveolar epithelial cell colonies in culture, and when added to the CFU-Epi culture medium, LysoTracker marked the differentiation of stem/progenitor-derived AT2 cells.

Conclusions

This study describes a novel method for isolating AT2 cells from mouse lungs. The high purity and viability of cells attained by this method, makes them suitable for functional analysis in vitro. The application of LysoTracker to live cell cultures will allow better assessment of the cellular and molecular mechanisms that regulate AT2 cell differentiation.  相似文献   

3.
The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger than both the choline and CDPcholine pools. Chemical measurements of the pool sizes showed that the choline phosphate pool was indeed much larger than the intracellular choline and CDPcholine pools. Pulse-chase studies with [Me-3H]choline revealed that labelled choline taken up by the cells was rapidly phosphorylated to choline phosphate and that the radioactivity lost from choline phosphate during the chase period appeared in phosphatidylcholine. Little change was observed in the labelling of CDPcholine during the chase period. These results indicate that cholinephosphate cytidylyltransferase catalyzes a rate-limiting reaction in phosphatidylcholine formation by fetal rat lung type II cells.  相似文献   

4.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

5.
We recently suggested that alveolar interstitial fibroblast-to-myofibroblast transdifferentiation may be a key mechanism underlying in utero nicotine-induced lung injury. However, the effects of in utero nicotine exposure on fetal alveolar type II (ATII) cells have not been fully determined. Placebo, nicotine (1 mg/kg), or nicotine (1 mg/kg) + the peroxisome proliferator-activated receptor (PPAR)-gamma agonist prostaglandin J(2) (PGJ(2), 0.3 mg/kg) was administered intraperitoneally once daily to time-mated pregnant Sprague-Dawley rats from embryonic day 6 until their death on embryonic day 20. Fetal ATII cells were isolated, and ATII cell proliferation, differentiation (surfactant synthesis), and metabolism (metabolic profiling with the stable isotope [1,2-(13)C(2)]-d-glucose) were determined after nicotine exposure in utero or in vitro. In utero nicotine exposure significantly stimulated ATII cell proliferation, differentiation, and metabolism. Although the effects on ATII cell proliferation and metabolism were almost completely prevented by concomitant treatment with PGJ(2), the effects on surfactant synthesis were not. On the basis of in utero and in vitro data, we conclude that surfactant synthesis is stimulated by nicotine's direct effect on ATII cells, whereas cell proliferation and metabolism are affected via a paracrine mechanism(s) secondary to its effects on the adepithelial fibroblasts. These data provide evidence for direct and indirect effects of in utero nicotine exposure on fetal ATII cells that could permanently alter the "developmental program" of the developing lung. More importantly, concomitant administration of PPAR-gamma agonists can effectively attenuate many of the effects of in utero exposure to nicotine on ATII cells.  相似文献   

6.
Alveoli of the rat lung are lined by three different cell types, the flat type I cells and the cuboidal type II and type III cells. Type III cells differ from type II cells by the presence of an apical tuft of microvilli and the absence of lamellar type secretory granules. In the present study we show by double immunolabelling that type III cells of the rat lung can be identified at the light-and electron microscope level by antibodies against both cytokeratin 18 and the actin-crosslinking protein villin. At the ultrastructural level, microvilli and their rootlets in the apical cytoplasm were labelled by the anti-villin antibodies, whereas a monoclonal antibody against cytokeratin 18 (Ks18.04) labelled bundles of intermediate filaments. In conclusion, antibodies against villin and certain monoclonal antibodies specific for cytokeratin 18 can be used as tools for selective visualization of type III cells in the rat lung.  相似文献   

7.
A method has been developed for isolating differentiated type II cells from human lung of 18-24-week gestation. The procedure involves an initial 4-day culture of lung explants in the presence of dexamethasone (10 nM) and triiodothyronine (2 nM). Type II cells (and fibroblasts) are isolated by trypsin digestion of the explants, two differential adherence steps and incubation overnight in primary culture. This method provides a high yield of type II cells ((50 +/- 15) X 10(6) cells/g wet weight of explant) with a purity of 85 +/- 5% in 16 experiments. The type II cells contain numerous perinuclear granules which stain darkly with toluidine blue and Papanicolaou stain; electron microscopy showed these inclusions to be lamellar bodies with tightly stacked, well defined lamellae. Type II cells, but not fibroblasts, were positive by immunofluorescence histology for surfactant apoprotein and binding of Maclura pomifera lectin which binds to the surface of type II but not type I cells in vivo. The rate of both [3H]acetate and [3H]choline incorporation into phosphatidylcholine (PC) was several-fold greater in type II cells than fibroblasts; the saturation of PC was 36.2 and 25.9%, respectively. Release of saturated PC was stimulated by terbutaline, the ionophore A23187, and tetradecanoyl phorbol acetate in type II cells but not fibroblasts. We conclude that differentiated type II cells can be isolated in relatively high yield and purity from hormone-treated explants of fetal human lung.  相似文献   

8.
Recent studies in fetal lung using immunological and molecular probes have revealed type I and type II cell phenotypic markers in primordial lung epithelial cells prior to the morphogenesis of these cell types. We have recently developed monoclonal antibodies specific for adult type I cells. To evaluate further the temporal appearance of the type I cell phenotype during alveolar epithelial cell ontogeny, we analyzed fetal lung development using one of our monoclonal antibodies (mAb VIII B2). The epitope recognized by mAb VIII B2 first appears in the canalicular stage of fetal lung development, at approx. embryonic day 19 (E19), in occasional, faintly stained tubules. Staining with this type I cell probe becomes more intense and more widespread with increasing gestational age, during which time the pattern of staining changes. Initially, all cells of the distal epithelial tubules are uniformly labelled along their apical and basolateral surfaces. As morphological differentiation of the alveolar epithelium proceeds, type I cell immunoreactivity appears to become restricted to the apical surface of the primitive type I cells in a pattern approaching that seen in the mature lung. We concurrently analyzed developing fetal lung with an antiserum to surfactant apoprotein-A (-SP-A). Consistent with the findings of others, labeling of SP-A was first detectable in scattered cuboidal cells at E18. Careful examination of the doublelabeled specimens suggested that some cells were reactive with both the VIII B2 and SP-A antibodies, particularly at E20. Confocal microscopic analysis of such sections from E20 lung confirmed this impression. Three populations of cells were detected: cells labeled only with -SP-A, cells labeled only with mAb VIII B2, and a smaller subset of cells labeled by both. We conclude that: (1) binding of mAb VIII B2 may be a marker of late (possibly terminal) type I cell differentiation; (2) it is likely to recognize a different epitope from another published type I cell mAb (SF-1), since mAb VIII B2 epitope appears at a much later developmental age; and (3) cells may co-express both type II (SP-A) and type I (mAb VIII B2 epitope) cell differentation antigens.  相似文献   

9.
Type I and type II alveolar epithelial cells (AECs) are derived from the same progenitor cell, but little is known about the factors that regulate their differentiation into separate phenotypes. An alteration in lung expansion alters the proportion type II AECs in the fetal lung, indicating that this may be a regulatory factor. Our aim was to quantify the changes in the proportion of type I and type II AECs caused by increased fetal lung expansion and to provide evidence for transdifferentiation of type II into type I cells. Lung tissue samples were collected from ovine fetuses exposed to increased lung expansion induced by 2, 4, or 10 days of tracheal obstruction (TO). The identities and proportions of AEC types were determined with electron microscopy. The proportion of type II cells was reduced from 28.5 +/- 2.2% in control fetuses to 9.4 +/- 2.3% at 2 days of TO and then to 1.9 +/- 0.8% at 10 days. The proportion of type I AECs was not altered at 2 days of TO (63.1 +/- 2.3%) compared with that of control cells (64.8 +/- 0.5%) but was markedly elevated (to 89.4 +/- 0.9%) at 10 days of TO. The proportion of an intermediate AEC type, which displayed characteristics of both type I and type II cells, increased from 5.7 +/- 1.3% in control fetuses to 23.8 +/- 5.1% by 2 days of TO and was similar to control values at 10 days of TO (7.7 +/- 0.9%). Our data show that increases in fetal lung expansion cause time-dependent changes in the proportion of AEC types, including a transient increase in an intermediate cell type. These data provide the first evidence to support the hypothesis that increases in fetal lung expansion induce differentiation of type II into type I AECs via an intermediate cell type.  相似文献   

10.
11.
神经干细胞的分化调控一直是发育神经生物学的重要研究课题。综述了调节胚胎和成体神经干细胞分化的细胞内在因素和外部环境因素,初步探讨了胚胎和成体神经干细胞分化机制的差异。  相似文献   

12.
The ability of the host to recognize pulmonary invasion by pathogenic organisms and establish an appropriate host response to infection requires innate immune defense mechanisms. Early bacterial clearance in the lung is mediated by alveolar macrophages (AM) and polymorphonuclear neutrophils. Additionally alveolar epithelial cells type II (AEC-II) may act as immunoregulatory cells. The toll-like receptors (TLR) are part of this innate immune defense, recognizing conserved patterns on microorganisms. Toll-like receptor 2 (TLR2) is crucial in detecting components of gram-positive bacteria and mycobacteria. Signals initiated by the interaction of TLR2 with bacterial components direct the subsequent inflammatory response. The detection of TLR2 mRNA in human lung tissue prompted us to localize the expression of mRNA and protein at the cellular level using a novel method for tissue fixation. We utilized HOPE-fixed lung specimen sections for targeting mRNA by in situ hybridization and protein by immunohistochemistry using the monoclonal antibody TL2.1. In normal lung areas the expression of TLR2 mRNA and protein was found to be located in cells resembling AEC-II and AM. Expression of mRNA was verified by RT-PCR and DNA sequencing. These results indicate a potential mechanism of increased immunosurveillance at the alveolar level controlling the localized infection.  相似文献   

13.
Neuregulin (NRG) stimulation of ErbB4 signaling is important for type II cell surfactant synthesis. ErbB4 may mediate gene expression via a non-canonical pathway involving enzymatic cleavage releasing its intracellular domain (4ICD) for nuclear trafficking and gene regulation. The accepted model for release of 4ICD is consecutive cleavage by Tumor necrosis factor alpha Converting Enzyme (TACE) and γ-secretase enzymes. Here, we show that 4ICD mediates surfactant synthesis and its release by γ-secretase is not dependent on previous TACE cleavage. We used siRNA to silence Presenilin-1 (PSEN-1) expression in a mouse lung type II epithelial cell line (MLE12 cells), and both siRNA knockdown and chemical inhibition of TACE. Knockdown of PSEN-1 significantly decreased baseline and NRG-stimulated surfactant phospholipid synthesis, expression of the surfactant proteins SP-B and SP-C, as well as 4ICD levels, with no change in ErbB4 ectodomain shedding. Neither siRNA knockdown nor chemical inhibition of TACE inhibited 4ICD release or surfactant synthesis. PSEN-1 cleavage of ErbB4 for non-canonical signaling through 4ICD release does not require prior cleavage by TACE.  相似文献   

14.
The specific activity of lysophosphatidylcholine acyltransferase in sonicated fetal rat lung type II cells was found to be an order of magnitude greater than that of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase. The specific activity of lysophosphatidylcholine acyltransferase in sonicated fetal rat lung type II cells increases towards the end of gestation, whereas that of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase does not show a change. While lysophosphatidylcholine acyltransferase in whole fetal lung homogenate is more active towards oleoyl-CoA than towards palmitoyl-CoA, the enzyme in sonicated fetal type II cells is more active towards palmitoyl-CoA. If measured with palmitoyl-CoA as acyl donor, the specific activity of lysophosphatidylcholine acyltransferase in type II cells is higher than that in whole lung during late gestation. In contrast, the specific activity of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase in type II cells is lower than that in whole lung. These observations indicate that in fetal rat type II cells the deacylation-reacylation cycle is more important for the formation of dipalmitoylphosphatidylcholine than the deacylation-transacylation process.  相似文献   

15.
16.
Type II alveolar epithelial cells were isolated from fetal rat lung by differential adherence in monolayer culture. The preparation had a high degree of purity, as assessed by phase contrast microscopy and immunocytochemistry. Purity, based on reactivity with specific anti-adult lung serum (SAALS), which recognizes only type II cells, was 91% for cells isolated from 19-day fetal lungs and 79% for cells isolated from 21-day fetal lungs. The lower purity of type II cells in cultures derived from 1-day postnatal rat lungs (51% cells reactive with SAALS) is probably due to a lower tendency of the type II cells from neonatal rats to adhere to culture dishes than of type II cells from fetal rats. Type II cells isolated from 21-day fetal lungs contained a higher percentage phosphatidylglycerol and incorporated [Me-3H]choline faster into phosphatidylcholine (PC) than type II cells isolated from 19-day fetal lungs. Moreover, in cell preparations derived from lungs at fetal day 21, a higher percentage of epithelial cells contained lamellar bodies than in preparations derived from lungs at fetal day 19. The observation of these differences in the stage of maturation indicates that these differences, which are typical features of the original material, are not obliterated by differentiation during the culture. Type II cells isolated according to the present procedure were capable of synthesizing PC with a high percentage of the disaturated species. This method for the isolation of fetal type II cells may be a useful tool in studies concerning surfactant synthesis and its regulation in the fetal lung.  相似文献   

17.
The ABCA3 gene, of the ABCA subclass of ATP-binding cassette (ABC) transporters, is expressed exclusively in lung. We report here the cloning, molecular characterization, and distribution of human ABCA3 in the lung. Immunoblot analysis using the specific antibody reveals a 150-kDa protein in the crude membrane fraction of human lung. Immunohistochemical analyses of alveoli show that ABCA3 is expressed only in the type II cells expressing surfactant protein A. At the ultrastructural level, ABCA3 immunoreactivity was detected mostly at the limiting membrane of the lamellar bodies. Since members of the ABCA transporter family are known to be involved in transmembrane transport of endogenous lipids, our findings suggest that ABCA3 plays an important role in the formation of pulmonary surfactant in type II cells.  相似文献   

18.
19.
20.
The liver has a marked capacity for regeneration. In most cases the liver regeneration is determined by hepatocytes. The regenerative capacity of hepatocytes is significantly reduced in acute or chronic damage. For example, in patients with alcoholic cirrhosis repair mechanisms are not activated and only organ transplantation or advanced methods of regenerative medicine can help such patients. Clinical trials including patients with various forms of liver disease have shown promising results of transplantation of autologous bone marrow stem cells. However, improvement of the effectiveness of such treatment requires optimization of sources of progenitor cells. In this study we have isolated stromal cells from the liver biopsies of three patients with alcoholic cirrhosis, performed their morphological and phenotypic analysis, and evaluated the hepatic potential of these cells in vitro. Stromal cells isolated from the fetal liver were used for comparative evaluation. During hepatic differentiation both types of cells expressed hepatic markers and secreted albumin. These results can serve as a basis for the development of a new method for the treatment of end-stage liver disease. The stromal cells isolated from the liver biopsies proliferate for a long time in a culture and this provides opportunity to produce them in large amounts for subsequent differentiation into hepatocyte-like cells and autologous transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号