首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 by was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined –16 to –25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.  相似文献   

3.
4.
5.
6.
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 by was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined ?16 to ?25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.  相似文献   

7.
8.
9.
Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114.  相似文献   

10.
Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114.  相似文献   

11.
12.
13.
A search of the pvd pyoverdine biosynthesis locus of Pseudomonas aeruginosa identified an open reading frame, PA2387, whose product exhibited a sequence similar to those of a number of so-called extracytoplasmic- function sigma factors responsible for siderophore-dependent expression of iron-siderophore receptors in Escherichia coli and Pseudomonas putida. Deletion of this gene, dubbed fpvI, compromised pyoverdine-dependent FpvA ferric pyoverdine receptor production and fpvA gene expression, while the cloned gene stimulated fpvA expression. A Fur-binding site was identified immediately upstream of fpvI, consistent with the observed iron-regulated expression of fpvI and fpvA.  相似文献   

14.
15.
16.
Identification and cloning of a fur homologue from Neisseria meningitidis   总被引:13,自引:1,他引:12  
The iron response in a number of bacterial systems is mediated by fur (f erric u ptake r egulation)-like regulatory systems. We have cloned and characterized a gene from Neisseria meningitidis that was homologous to Escherichia coli fur. This clone was capable of modulating expression from both E. coli and neisserial iron-regulated promoters in response to iron, and it produced a protein that reacted with anti-E. coli fur serum. Although the DNA and predicted amino acid sequences were very similar to those of four other published fur homologues, meningococcal fur was the most divergent of the group. Inability to construct a meningococcal fur mutant suggested that fur may be essential in this species.  相似文献   

17.
Summary A study about the effect of iron concentration and the presence of different organic nitrogen sources on fluorescent pigment production by Pseudomonas reptilivora and Pseudomonas fluorescens has been investigated. An inverse proportionality between pigment formation and iron concentration for both species has been deduced. However, P. reptilivora responds to increasing iron concentrations more sensitive than P. fluorescens, i.e. it forms at equal iron concentration less pigment. P. reptilivora needs iron even for growth contrary to P. fluorescens. The differences in pigment production on different peptones are due to the iron contained in these media.  相似文献   

18.
Summary The nucleotide sequence was determined for the bacterial ice nucleation gene, inaX, from Xanthomonas campestris pathovar translucens X56S. Comparison of the nucleotide sequence of inaX to the previously characterized ice nucleation genes, inaZ from Pseudomonas syringae S203, inaW from Pseudomonas fluorescens MS1650, and iceE from Erwinia herbicola M1 revealed a 65.8%, 67.8%, and 68.8% homology, respectively. Within the internal, repetitive domain of the translated product of inaX are 153 consecutive octapeptide repeat units.  相似文献   

19.
In Pseudomonas sp. strain M114, the outer membrane receptor for ferric pseudobactin M114 was shown to transport ferric pseudobactins B10 and A225, in addition to its own. The gene encoding this receptor, which was previously cloned on pCUP3, was localized by Tn5 mutagenesis to a region comprising >1.6 kb of M114 DNA. A mutant (strain M114R1) lacking this receptor was then created by a marker exchange technique. Characterization of this mutant by using purified pseudobactin M114 in radiolabeled ferric iron uptake studies confirmed that it was completely unable to utilize this siderophore for acquisition of iron. In addition, it lacked an outer membrane protein band of 89 kDa when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As a result, growth of the mutant was severely restricted under low-iron conditions. However, this phenotype was reversed in the presence of another fluorescent siderophore (pseudobactin MT3A) from Pseudomonas sp. strain MT3A, suggesting the presence of a second receptor in strain M114. Furthermore, wild-type Pseudomonas sp. strain B24 was not able to utilize ferric pseudobactin MT3A, and this phenotype was not reversed upon expression of the M114 receptor encoded on pCUP3. However, a cosmid clone (pMS1047) that enabled strain B24 to utilize ferric pseudobactin MT3A was isolated from an M114 gene bank. Radiolabel transport assays with purified pseudobactin MT3A confirmed this event. Plasmid pMS1047 was shown to encode an outer membrane protein of 81 kDa in strain B24 under iron-limiting conditions; this protein corresponds to a similar protein in strain M114.  相似文献   

20.
A novel catechol-substituted cephalosporin, S-9096, showed potent antibacterial activity against Pseudomonas aeruginosa under both iron-deficient and aerobic conditions. S-9096 and ferric iron formed a chelate complex at the molar ratio of 3 to 1, which could be incorporated into P. aeruginosa cells grown under such conditions. Incorporation decreased when the cells were grown under either iron-sufficient or anaerobic conditions, with a concomitant disappearance of iron-regulated outer membrane proteins that were considered to function as receptors for ferric siderophores. These results indicated that the ferric chelate of S-9096 was incorporated into P. aeruginosa cells via a ferric iron transport pathway, which caused the high antibacterial potency of S-9096. All of the S-9096-resistant mutants that were able to grow even under iron-deficient conditions lacked an iron-regulated outer membrane protein having an apparent molecular mass of 66 kDa, suggesting the role of this protein as a receptor for the ferric chelate of S-9096. Correspondence to: Y. Yamano  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号