首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Methanol-induced conformational transitions of hen egg white lysozyme were investigated with a combined use of far- and near-UV CD and NMR spectroscopies, ANS binding and small-angle X-ray scattering. Addition of methanol induced no global change in the native conformation itself, but induced a transition from the native state to the denatured state which was highly cooperative, as shown by the coincidence of transition curves monitored by the far- and near-UV CD spectroscopy, by isodichroic points in the far- and near-UV CD spectra and by the concomitant disappearance of individual 1H NMR signals of the native state. The ANS binding experiments could detect no intermediate conformer similar to the molten globule state in the process of the methanol denaturation. However, at high concentration of methanol, e.g., 60% (v/v) methanol/water, a highly helical state (H) was realized. The H state had a helical content much higher than the native state, monitored by far-UV CD spectroscopy, and had no specific tertiary structure, monitored both by near-UV CD and NMR spectroscopy. The radius of gyration in the H state, 24.9 angstroms, was significantly larger than that in the native state (15.7 angstroms). The Kratky plot for the H state did not show a clear peak and was quite similar to that for the urea-denatured state, indicating a complete lack of globularity. Thus we conclude that the H state has a considerably expanded, flexible broken rod-like conformation which is clearly distinguishable from the "molten globule" state. The stability of both N and H states depends on pH and methanol concentration. Thus a phase diagram involving N and H was constructed.  相似文献   

2.
Yuan C  Byeon IJ  Poi MJ  Tsai MD 《Biochemistry》1999,38(10):2919-2929
Previous NMR studies have shown that many phospholipase A2 (PLA2, from bovine pancreas, overexpressed in Escherichia coli) mutants display some properties reminiscent of a molten globule state. Further NMR analyses for some of the mutants indicated that formation of the "molten globule-like state" is a pH-dependent phenomenon. The mutants I9Y and I9F showed perturbed NMR properties throughout the pH range studied, while the mutants H48A and C44A/C105A displayed native-like spectra at neutral pH but molten globule-like ones under acidic conditions, with a "transition pH" around 4. On the other hand, wild-type PLA2 exhibits exceptional pH stability and turns into a similar molten globule-like state only under highly acidic conditions such as 1 M HCl. The H48A mutant was used to rigorously establish the property of the molten globule-like state of PLA2 mutants. The results of far-UV CD, near-UV CD, and ANS-binding fluorescence suggest that H48A retains native-like secondary structures but loses tertiary structure during the conformational transition. However, the tertiary structure is not completely lost, as evidenced by the retention of some long-range NOEs in two-dimensional NOESY spectra. The conclusion was further substantiated by three-dimensional NOESY-HSQC experiments on a 15N-labeled H48A sample. It was revealed that the molten globule-like state at mildly acidic pH retained some rigid tertiary structure, which consisted of partial alpha-helix II (Y52-L58), alpha-helix III (D59-V63), beta-wing (S74-S85) and partial alpha-helix IV (A90-N97). These residual tertiary structures grouped in half of the protein could be attributed to stabilization by some of the disulfide bonds. The extreme sensitivity of the PLA2 structure to site-directed mutagenesis is unprecedented. It is interesting to note that most of the functional residues (the active site, the hydrophobic channel, the interfacial binding site, and the calcium-binding loop) are located in the remainder of the protein, which is well disrupted in tertiary interactions.  相似文献   

3.
A partly folded state of hen egg-white lysozyme has been characterized in 50% DMSO. Low concentrations of DMSO (<10%) have little effect on the overall folded conformation of lysozyme as seen from 1H NMR chemical shift dispersion. At increasing DMSO concentrations (>10%) a cooperative transition of the structure to a new, partially folded state is observed. This transition is essentially complete by ∼50% DMSO. NMR studies show an overall decrease in chemical shift dispersion with marked broadening of many resonances. A substantial number of backbone and side chain–side chain NOEs suggests the presence of secondary and tertiary interactions in the intermediate state. Tertiary organization of the aromatic residues is also demonstrated by enhanced near-UV circular dichroism and limited exposure of tryptophans as monitored by iodide quenching of fluorescence. The intermediate state exhibits enhanced binding to hydrophobic dyes. Further, the structural transition from this state to a largely unfolded conformation is cooperative. H/D exchange rates of several amide protons and four indole protons of tryptophans (W28, W108, W111, and W123), measured by refolding from 50% DMSO at different time intervals reveal that protection factors are high for the helical domain, whereas NH groups in the triple stranded antiparallel β-sheet domain are largely solvent-exposed. An ordered hydrophobic core in the intermediate state comprising of helix A, helix B, and helix D is consistent with the high protection factors observed. The structured intermediate in 50% DMSO resembles the early kinetic intermediate observed in the refolding of hen egg white lysozyme, as well as a molten globule state of equine lysozyme at low pH. The results demonstrate the potential use of nonaqueous structure perturbing solvents like DMSO to stabilize partially folded conformations of proteins. Proteins 29:492–507, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
A mixture of 4-chloro-1-butanol and 2,2,2-Trifluoroethanol (TFE) has been used to generate Molten globule (MG) state of structurally homologous but functionally different proteins bovine α-lactalbumin and hen egg-white lysozyme. The thermal denaturation was done using UV–Visible spectroscopy. From UV–Visible profile, thermal transition was not observed beyond a particular concentration. There was an indication of molten globule state in case of α-lactalbumin from circular dichroism experiments. By intrinsic tryptophan fluorescence, acrylamide and potassium iodide quenching, 8-anilino-naphthalene sulfonic acid (ANS) binding and energy transfer studies the presence of molten globule state was confirmed. Quantitative characterization of MG state and determining the binding thermodynamics of ANS to the MG state was done using Isothermal Titration Calorimetry (ITC). Results show that α-lactalbumin exists in MG state at a particular concentration but lysozyme does not show features of MG state.  相似文献   

5.
Conformational features of reduced and disulfide intact hen egg white lysozyme in aqueous 1,4-dioxane and 3-chloro-1, 2-propanediol solutions have been examined using circular dichroism and fluorescence spectroscopy. We find that in presence of 1, 4-dioxane, reduced lysozyme assumes a relatively compact conformational form with secondary structure closer to native state and no tertiary structure as judged by peptide and aromatic CD spectra and ANS binding studies monitored by fluorescence. Further, in presence of 40% (v/v) 3-chloro-1, 2-propanediol, disulfide intact lysozyme (DI-lysozyme) assumes a conformational form with native like secondary structure and no tertiary structure akin to a molten globule state. We correlate our results to kinetic hydrogen- deuterium exchange NMR results of the refolding of lysozyme available in literature and suggest that the conformational forms observed in our study could be models for kinetic intermediates in the refolding of lysozyme.  相似文献   

6.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

7.
Here, we show that an unfolded intermediate of canine milk lysozyme is extraordinarily stable compared with that of the other members of the lysozyme-alpha-lactalbumin superfamily, which has been studied previously. The stability of the intermediate of this protein was investigated using calorimetry, CD spectroscopy, and NMR spectroscopy, and the results were interpreted in terms of the structure revealed by X-ray crystallography at a resolution of 1.85 A to an R-factor of 17.8%. On the basis of the results of the thermal unfolding, this protein unfolds in two clear cooperative stages, and the melting temperature from the intermediate to the unfolded states is about 20 degrees C higher than that of equine milk lysozyme. Furthermore, the (1)H NMR spectra of canine milk lysozyme at 60 degrees C, essentially 100% of which exists in the intermediate, showed that small resonance peaks that arise from ring-current shifts of aliphatic protons are still present in the upfield region from 0 to -1 ppm. The protein at this temperature (60 degrees C) and pH 4.5 has been found to bind 1-anilino-naphthalene-8-sulfonate (ANS) with enhancement of the fluorescence intensity compared with that of native and thermally unfolded states. We interpret that the extraordinarily stable intermediate is a molten globule state, and the extraordinary stabilization of the molten globule state comes from stronger protection around the C- and D-helix of the aromatic cluster region due to the His-21 residue. The conclusion helps to explain how the molten globule state acquires its structure and stability.  相似文献   

8.
Park SH 《BMB reports》2008,41(1):35-40
The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.  相似文献   

9.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

10.
Thermally induced transition curves of hen egg-white lysozyme were measured in the presence of several concentrations of dextran at pH 2.0 by near-UV and far-UV CD. The transition curves were fitted to a two-state model by a non-linear, least-squares method to obtain the transition temperature (T(m)), enthalpy change (deltaH(u)(T(m))), and free energy change (deltaG(u)(T)) of the unfolding transition. An increase in T(m) and almost constant deltaH(u)(T(m)) values were observed in the presence of added dextran at concentrations exceeding ca 100 g l(-1). In addition, dextran-induced conformational changes of fully unfolded protein were investigated by CD spectroscopy. Addition of high concentrations of dextran to solutions of acid-unfolded cytochrome c at pH 2.0 results in a shift of the CD spectrum from that characteristic of the fully unfolded polypeptide to that characteristic of the more compact, salt-induced molten globule state, a result suggesting that the molten globule-like state is stabilized relative to the fully unfolded form in crowded environments. Both observations are in qualitative accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.  相似文献   

11.
Acid unfolding pathway of conalbumin (CA), a monomeric glycoprotein from hen egg white, has been investigated using far- and near-UV CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe 1-anilino-8-napthalene sulfonate (ANS) and dynamic light scattering (DLS). We observe pH-dependent changes in secondary and tertiary structure of CA. It has native-like α-helical secondary structure at pH 4.0 but loss structure at pH 3.0. The CA existed exclusively as a pre-molten globule state and molten globule state in solution at pH 4.0 and pH 3.0, respectively. The effect of pH on the conformation and thermostability of CA points toward its heat resistance at neutral pH. DLS results show that MG state existed as compact form in aqueous solutions with hydrodynamic radii of 4.7 nm. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of an intermediate state, partly unfolded, in-between native and unfolded states.  相似文献   

12.
The nature of denatured ensembles of the enzyme human carbonic anhydrase (HCA) has been extensively studied by various methods in the past. The protein constitutes an interesting model for folding studies that does not unfold by a simple two-state transition, instead a molten globule intermediate is highly populated at 1.5 M GuHCl. In this work, NMR and H/D exchange studies have been conducted on one of the isozymes, HCA I. The H/D exchange studies, which were enabled by the previously obtained resonance assignment of HCA I, have been used to identify unfolded forms that are accessible from the native state. In addition, the GuHCl-induced unfolded states of HCA I have also been characterized by NMR at GuHCl concentrations in the 0-5 M range. The most important findings in this work are as follows: (1) Amide protons located in the center of the beta-sheet require global unfolding events for efficient H/D exchange. (2) The molten globule and the native state give similar protection against H/D exchange for all of the observable amide protons (i.e., water seems not to efficiently penetrate the interior of the molten globule). (3) At high protein concentrations, the molten globule can form large aggregates, which are not detectable by solution-state NMR methods. (4) The unfolded state (U), present at GuHCl concentrations above 2 M, is composed of an ensemble of conformations having residual structures with different stabilities.  相似文献   

13.
We have provided evidence that hen egg white lysozyme (HEWL) existed in alpha helical and beta structure dominated molten globule (MG) states at high pH and in the presence of tertiary butanol, respectively. Circular dichroism (CD), intrinsic fluorescence, ANS binding and acrylamide-induced fluorescence quenching techniques have been used to investigate alkali-induced unfolding of HEWL and the effect of tertiary butanol on the alkaline-induced state. At pH 12.75, HEWL existed as molten globule like intermediate. The observed MG-like intermediate was characterized by (i) retention of 77% of the native secondary structure, (ii) enhanced binding of ANS (approximately 5 times) compared to native and completely unfolded state, (iii) loss of the tertiary structure as indicated by the tertiary structural probes (near-UV, CD and Intrinsic fluorescence) and (iv) acrylamide quenching studies showed that MG state has compactness intermediate between native and completely unfolded states. Moreover, structural properties of the protein at isoelectric point (pI) and denatured states have also been described. We have also shown that in the presence of 45% tertiary butanol (t-butanol), HEWL at pH 7.0 and 11.0 (pI 11.0) existed in helical structure without much affecting tertiary structure. Interestingly, MG state of HEWL at pH 12.7 transformed into another MG state (MG2) at 20% t-butanol (v/v), in which secondary structure is mainly beta sheets. On further increasing the t-butanol concentration alpha helix was found to reform. We have proposed that formation of both alpha helical and beta sheet dominated intermediate may be possible in the folding pathway of alpha + beta protein.  相似文献   

14.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

15.
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments.  相似文献   

16.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

17.
Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid.  相似文献   

18.
The native state (1)H, (15)N resonance assignment of 123 of the 128 nonproline residues of canine milk lysozyme has enabled measurements of the amide hydrogen exchange of over 70 amide hydrogens in the molten globule state. To elucidate the mechanism of protein folding, the molten globule state has been studied as a model of the folding intermediate state. Lysozyme and alpha-lactalbumin are homologous to each other, but their equilibrium unfolding mechanisms differ. Generally, the folding mechanism of lysozyme obeys a two-state model, whereas that of alpha-lactalbumin follows a three-state model. Exceptions to this rule are equine and canine milk lysozymes, which exhibit a partially unfolded state during the equilibrium unfolding; this state resembles the molten globule state of alpha-lactalbumin but with extreme stability. Study of the molten globules of alpha-lactalbumin and equine milk lysozyme showed that the stabilities of their alpha-helices are similar, despite the differences in the thermodynamic stability of their molten globule states. On the other hand, our hydrogen exchange study of the molten globule of canine milk lysozyme showed that the alpha-helices are more stabilized than in alpha-lactalbumin or equine milk lysozyme and that this enhanced stability is caused by the strengthened cooperative interaction between secondary structure elements. Thus, our results underscore the importance of the cooperative interaction in the stability of the molten globule state.  相似文献   

19.
A molten globule-like intermediate of Con-A was obtained when subjected to acid unfolding. At pH 2 the intermediate was found to have native-like secondary structure, somewhat denatured tertiary structure and maximum ANS binding. Further the stability of this intermediate was studied in presence of fluoroalcohols (TFE and HFIP) and polyethylene glycols (PEG-400, 4000 and 20,000). Secondary structural changes were monitored by far-UV CD while alterations in the tertiary structure of the acid unfolded intermediate were probed by near-UV CD. To study the environment and position of the tryptophan residues present intrinsic fluorescence studies were performed. ANS binding studies were also made to know the extent of exposure of the hydrophobic patches. Using the above-mentioned techniques it was found that in presence of fluoroalcohols the pH 2 intermediate was transformed to a state with predominant alpha-helical secondary and denatured tertiary structures. In the pathway of these transformations MG-like intermediates were formed at 10% TFE and 6% HFIP. The folding intermediate of Con-A obtained at pH 2 underwent a series of conformational changes when exposed to different molecular weight PEGs. Secondary structure was induced by low molecular weight PEG-400 and low concentrations of PEG-4000 and PEG-20,000 while at higher concentrations transition in structure was observed. Tertiary structure was stabilized only at low concentrations of PEG-400. PEG-4000 and PEG-20,000 in the whole concentration range resulted in the loss of tertiary structure.  相似文献   

20.
A series of three aromatic to alanine mutants of recombinant murine interleukin-6 lacking the 22 N-terminal residues (DeltaN22mIL-6) were constructed to investigate the role of these residues in the structure and function of mIL-6. While Y78A and Y97A have activities similar to that of DeltaN22mIL-6, F173A lacks biological activity. F173A retains high levels of secondary structure, as determined by far-UV circular dichroism (CD), but has substantially reduced levels of tertiary structure, as determined by near-UV CD and (1)H NMR spectroscopy. F173A also binds the hydrophobic dye 1-anilino-8-naphthalenesulfonic acid (ANS) over a range of pH values and exhibits noncooperative equilibrium unfolding (as judged by the noncoincidence of monophasic unfolding transitions monitored by far-UV CD and lambda(max), with midpoints of unfolding at 2.6 +/- 0. 1 and 3.5 +/- 0.3 M urea, respectively, and the lack of an observable thermal unfolding transition). These are all properties of molten globule states, suggesting that the loss of activity of F173A results from the disruption of the fine structure of the protein, rather than from the loss of a side chain that is important for ligand-receptor interactions. Surprisingly, under some conditions, this loosened conformation is no more susceptible to proteolytic attack than the parent protein. By analogy with human IL-6, Phe173 in DeltaN22mIL-6 makes multiple interhelical interactions, the removal of which appear to be sufficient to induce a molten globule-like conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号