首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

It has widely been recognized that the media play a key role in framing debates about genetic issues. This paper provides an overview of the major areas of debate within the social scientific literature on media, public understanding of science and human genetics. It evaluates current approaches to assessing the role of the media in influencing public policy debates. It argues that an analysis of the strategies of news sources should occupy a central role in furthering understanding about the ways in which various social actors seek to influence public policy agendas. At present, within the field of human genetics, only a handful of researchers have systematically examined the strategies of news sources from the perspective of the sources themselves. While recent research has focused upon identifying the major sources and how they are used in science reporting, there remains much to be done in uncovering the processes of negotiation and contestation among social actors prior to issues gaining media coverage.  相似文献   

2.
From its origin, the PIR has aspired to support research in computational biology and genomics through the compilation of a comprehensive, quality controlled and well-organized protein sequence information resource. The resource originated with the pioneering work of the late Margaret O. Dayhoff in the early 1960s. Since 1988, the Protein Sequence Database has been maintained collaboratively by PIR-International, an association of macromolecular sequence data collection centers dedicated to fostering international cooperation as an essential element in the development of scientific databases. The work of the resource is widely distributed and is available on the World Wide Web, via FTP, E-mail server, CD-ROM and magnetic media. It is widely redistributed and incorporated into many other protein sequence data compilations including SWISS-PROT and theEntrezsystem of the NCBI.  相似文献   

3.
Increasing public interest in science information in a digital and 2.0 science era promotes a dramatically, rapid and deep change in science itself. The emergence and expansion of new technologies and internet-based tools is leading to new means to improve scientific methodology and communication, assessment, promotion and certification. It allows methods of acquisition, manipulation and storage, generating vast quantities of data that can further facilitate the research process. It also improves access to scientific results through information sharing and discussion. Content previously restricted only to specialists is now available to a wider audience. This context requires new management systems to make scientific knowledge more accessible and useable, including new measures to evaluate the reach of scientific information. The new science and research quality measures are strongly related to the new online technologies and services based in social media. Tools such as blogs, social bookmarks and online reference managers, Twitter and others offer alternative, transparent and more comprehensive information about the active interest, usage and reach of scientific publications. Another of these new filters is the Research Blogging platform, which was created in 2007 and now has over 1,230 active blogs, with over 26,960 entries posted about peer-reviewed research on subjects ranging from Anthropology to Zoology. This study takes a closer look at RB, in order to get insights into its contribution to the rapidly changing landscape of scientific communication.  相似文献   

4.
Most of the world's population that derives their livelihoods or part of their livelihoods from forests are out of the information loop. Exclusion of public users of natural resources from access to scientific research results is not an oversight; it is a systemic problem that has costly ramifications for conservation and development. Results of a survey of 268 researchers from 29 countries indicate that institutional incentives support the linear, top-down communication of results through peer-reviewed journal articles, which often guarantees positive performance measurement. While the largest percentage of respondents (34%) ranked scientists as the most important audience for their work, only 15 percent of respondents considered peer-reviewed journals effective in promoting conservation and/or development. Respondents perceived that local initiatives (27%) and training (16%) were likely to lead to success in conservation and development; but few scientists invest in these activities. Engagement with the media (5%), production of training and educational materials (4%) and popular publications (5%) as outlets for scientific findings was perceived as inconsequential (<14%) in measuring scientific performance. Less than 3 percent of respondents ranked corporate actors as an important audience for their work. To ensure science is shared with those who need it, a shift in incentive structures is needed that rewards actual impact rather than only 'high-impact' journals. Widely used approaches and theoretical underpinnings from the social sciences, which underlie popular education and communication for social change, could enhance communication by linking knowledge and action in conservation biology.  相似文献   

5.
Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a ‘neurosexism’ that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers’ comments, most discussion of the study took pains to portray the sexes’ unique abilities as equal and ‘complementary’. However, this content often resembled a form of benevolent sexism, in which praise of women’s social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society.  相似文献   

6.
Paige Brown 《EMBO reports》2012,13(11):964-967
Many scientists blame the media for sensationalising scientific findings, but new research suggests that things can go awry at all levels, from the scientific report to the press officer to the journalist.Everything gives you cancer, at least if you believe what you read in the news or see on TV. Fortunately, everything also cures cancer, from red wine to silver nanoparticles. Of course the truth lies somewhere in between, and scientists might point out that these claims are at worst dangerous sensationalism and at best misjudged journalism. These kinds of media story, which inflate the risks and benefits of research, have led to a mistrust of the press among some scientists. But are journalists solely at fault when science reporting goes wrong, as many scientists believe [1]? New research suggests it is time to lay to rest the myth that the press alone is to blame. The truth is far more nuanced and science reporting can go wrong at many stages, from the researchers to the press officers to the diverse producers of news.Many science communication researchers suggest that science in the media is not as distorted as scientists believe, although they do admit that science reporting tends to under-represent risks and over-emphasize benefits [2]. “I think there is a lot less of this [misreported science] than some scientists presume. I actually think that there is a bit of laziness in the narrative around science and the media,” said Fiona Fox, Director of the UK Science Media Centre (London, UK), an independent press office that serves as a liaison between scientists and journalists. “My bottom line is that, certainly in the UK, a vast majority of journalists report science accurately in a measured way, and it''s certainly not a terrible story. Having said that, lots of things do go wrong for a number of reasons.”Fox said that the centre sees everything from fantastic press releases to those that completely misrepresent and sensationalize scientific findings. They have applauded news stories that beautifully reported the caveats and limitations of a particular scientific study, but they have also cringed as a radio talk show pitted a massive and influential body of research against a single non-scientist sceptic.“You ask, is it the press releases, is it the universities, is it the journalists? The truth is that it''s all three,” Fox said. “But even admitting that is admitting more complexity. So anyone who says that scientists and university press officers deliver perfectly accurate science and the media misrepresent it […] that really is not the whole story.”Scientists and scientific institutions today invest more time and effort into communicating with the media than they did a decade ago, especially given the modern emphasis on communicating scientific results to the public [3]. Today, there are considerable pressures on scientists to reach out and even ‘sell their work'' to public relations officers and journalists. “For every story that a journalist has hyped and sensationalized, there will be another example of that coming directly from a press release that we [scientists] hyped and sensationalized,” Fox said. “And for every time that that was a science press officer, there will also be a science press officer who will tell you, ‘I did a much more nuanced press release, but the academic wanted me to over claim for it''.”Although science public relations has helped to put scientific issues on the public agenda, there are also dangers inherent in the process of translation from original research to press release to media story. Previous research in the area of science communication has focused on conflicting scientific and media values, and the effects of science media on audiences. However, studies have raised awareness of the role of press releases in distorting information from the lab bench to published news [4].In a 2011 study of genetic research claims made in press releases and mainstream print media, science communication researcher Jean Brechman, who works at the US advertising and marketing research firm Gallup & Robinson, found evidence that scientific knowledge gets distorted as it is “filtered and translated for mass communication” with “slippages and inconsistencies” occurring along the way, such that the end message does not accurately represent the original science [4]. Although Brechman and colleagues found a concerning point of distortion in the transition between press release and news article, they also observed a misrepresentation of the original science in a significant portion of the press releases themselves.In a previous study, Brechman and his colleagues had also concluded that “errors commonly attributed to science journalists, such as lack of qualifying details and use of oversimplified language, originate in press releases.” Even more worrisome, as Fox told a Nature commentary author in 2009, public relations departments are increasingly filling the need of the media for quick content [5].Fox believes that a common characteristic of misrepresented science in press releases and the media is the over-claiming of preliminary studies. As such, the growing prevalence of rapid, short-format publications that publicize early results might be exacerbating the problem. Research has also revealed that over-emphasis on the beneficial effects of experimental medical treatments seen in press releases and news coverage, often called ‘spin'', can stem from bias in the abstract of the original scientific article itself [6]. Such findings warrant a closer examination of the language used in scientific articles and abstracts, as the wording and ‘spin'' of conclusions drawn by researchers in their peer-reviewed publications might have significant impacts on subsequent media coverage.Of course, some stories about scientific discoveries are just not easy to tell owing to their complexity. They are “messy, complicated, open to interpretation and ripe for misreporting,” as Fox wrote in a post on her blog On Science and the Media (fionafox.blogspot.com). They do not fit the single-page blog post or the short press release. Some scientific experiments and the peer-reviewed articles and media stories that flow from them are inherently full of caveats, contexts and conflicting results and cannot be communicated in a short format [7].In a 2012 issue of Perspectives on Psychological Science, Marco Bertamini at the University of Liverpool (UK) and Marcus R. Munafo at the University of Bristol (UK) suggested that a shift toward “bite-size” publications in areas of science such as psychology might be promoting more single-study models of research, fewer efforts to replicate initial findings, curtailed detailing of previous relevant work and bias toward “false alarm” or false-positive results [7]. The authors pointed out that larger, multi-experiment studies are typically published in longer papers with larger sample sizes and tend to be more accurate. They also suggested that this culture of brief, single-study reports based on small data sets will lead to the contamination of the scientific literature with false-positive findings. Unfortunately, false science far more easily enters the literature than leaves it [8].One famous example is that of Andrew Wakefield, whose 1998 publication in The Lancet claimed to link autism with the combined measles, mumps and rubella (MMR) vaccination. It took years of work by many scientists, and the aid of an exposé by British investigative reporter Brian Deer, to finally force retraction of the paper. However, significant damage had already been done and many parents continue to avoid immunizing their children out of fear. Deer claims that scientific journals were a large part of the problem: “[D]uring the many years in which I investigated the MMR vaccine controversy, the worst and most inexcusable reporting on the subject, apart from the original Wakefield claims in the Lancet, was published in Nature and republished in Scientific American,” he said. “There is an enormous amount of hypocrisy among those who accuse the media of misreporting science.”What factors are promoting this shift to bite-size science? One is certainly the increasing pressure and competition to publish many papers in high-impact journals, which prefer short articles with new, ground-breaking findings.“Bibliometrics is playing a larger role in academia in deciding who gets a job and who gets promoted,” Bertamini said. “In general, if things are measured by citations, there is pressure to publish as much and as often as possible, and also to focus on what is surprising; thus, we can see how this may lead to an inflation in the number of papers but also an increase in publication bias.”Bertamini points to the real possibility that measured effects emerging from a group of small samples can be much larger than the real effect in the total population. “This variability is bad enough, but it is even worse when you consider that what is more likely to be written up and accepted for publication are exactly the larger differences,” he explained.Alongside the endless pressure to publish, the nature of the peer-reviewed publication process itself prioritizes exciting and statistically impressive results. Fluke scientific discoveries and surprising results are often considered newsworthy, even if they end up being false-positives. The bite-size article aggravates this problem in what Bertamini fears is a growing similarity between academic writing and media reporting: “The general media, including blogs and newspapers, will of course focus on what is curious, funny, controversial, and so on. Academic papers must not do the same, and the quality control system is there to prevent that.”The real danger is that, with more than one million scientific papers published every year, journalists can tend to rely on only a few influential journals such as Science and Nature for science news [3]. Although the influence and reliability of these prestigious journals is well established, the risk that journalists and other media producers might be propagating the exciting yet preliminary results published in their pages is undeniable.Fox has personal experience of the consequences of hype surrounding surprising but preliminary science. Her sister has chronic fatigue syndrome (CFS), a debilitating medical condition with no known test or cure. When Science published an article in 2009 linking CFS with a viral agent, Fox was naturally both curious and sceptical [9]. “I thought even if I knew that this was an incredibly significant finding, the fact that nobody had ever found a biological link before also meant that it would have to be replicated before patients could get excited,” Fox explained. “And of course what happened was all the UK journalists were desperate to splash it on the front page because it was so surprising and so significant and could completely revolutionize the approach to CFS, the treatment and potential cure.”Fox observed that while some journalists placed the caveats of the study deep within their stories, others left them out completely. “I gather in the USA it was massive, it was front page news and patients were going online to try and find a test for this particular virus. But in the end, nobody could replicate it, literally nobody. A Dutch group tried, Imperial College London, lots of groups, but nobody could replicate it. And in the end, the paper has been withdrawn from Science.”For Fox, the fact that the paper was withdrawn, incidentally due to a finding of contamination in the samples, was less interesting than the way that the paper was reported by journalists. “We would want any journal press officer to literally in the first paragraph be highlighting the fact that this was such a surprising result that it shouldn''t be splashed on the front page,” she said. Of course to the journalist, waiting for the study to be replicated is anathema in a culture that values exciting and new findings. “To the scientific community, the fact that it is surprising and new means that we should calm down and wait until it is proved,” Fox warned.So, the media must also take its share of the blame when it comes to distorting science news. Indeed, research analysing science coverage in the media has shown that stories tend to exaggerate preliminary findings, use sensationalist terms, avoid complex issues, fail to mention financial conflicts of interest, ignore statistical limitations and transform inherent uncertainties into controversy [3,10].One concerning development within journalism is the ‘balanced treatment'' of controversial science, also called ‘false balance'' by many science communicators. This balanced treatment has helped supporters of pseudoscientific notions gain equal ground with scientific experts in media stories on issues such as climate change and biotechnology [11].“Almost every time the issue of creationism or intelligent design comes up, many newspapers and other media feel that they need to present ‘both sides'', even though one is clearly nonsensical, and indeed harmful to public education,” commented Massimo Pigliucci, author of Nonsense on Stilts: How to Tell Science from Bunk [12].Fox also criticizes false balance on issues such as global climate change. “On that one you can''t blame the scientific community, you can''t blame science press officers,” she said. “That is a real clashing of values. One of the values that most journalists have bred into them is about balance and impartiality, balancing the views of one person with an opponent when it''s controversial. So on issues like climate change, where there is a big controversy, their instinct as a journalist will be to make sure that if they have a climate scientist on the radio or on TV or quoted in the newspaper, they pick up the phone and make sure that they have a climate skeptic.” However, balanced viewpoints should not threaten years of rigorous scientific research embodied in a peer-reviewed publication. “We are not saying generally that we [scientists] want special treatment from journalists,” Fox said, “but we are saying that this whole principle of balance, which applies quite well in politics, doesn''t cross over to science…”Bertamini believes the situation could be made worse if publication standards are relaxed in favour of promoting a more public and open review process. “If today you were to research the issue of human contribution to global warming you would find a consensus in the scientific literature. Yet you would find no such consensus in the general media. In part this is due to the existence of powerful and well-funded lobbies that fill the media with unfounded skepticism. Now imagine if these lobbies had more access to publish their views in the scientific literature, maybe in the form of post publication feedback. This would be a dangerous consequence of blurring the line that separates scientific writing and the broader media.”In an age in which the way science is presented in the news can have significant impacts for audiences, especially when it comes to health news, what can science communicators and journalists do to keep audiences reading without having to distort, hype, trivialize, dramatize or otherwise misrepresent science?Pigliucci believes that many different sources—press releases, blogs, newspapers and investigative science journalism pieces—can cross-check reported science and challenge its accuracy, if necessary. “There are examples of bloggers pointing out technical problems with published scientific papers,” Pigliucci said. “Unfortunately, as we all know, the game can be played the other way around too, with plenty of bloggers, ‘twitterers'' and others actually obfuscating and muddling things even more.” Pigliucci hopes to see a cultural change take place in science reporting, one that emphasizes “more reflective shouting, less shouting of talking points,” he said.Fox believes that journalists still need to cover scientific developments more responsibly, especially given that scientists are increasingly reaching out to press officers and the public. Journalists can inform, intrigue and entertain whilst maintaining accurate representations of the original science, but need to understand that preliminary results must be replicated and validated before being splashed on the front page. They should also strive to interview experts who do not have financial ties or competing interests in the research, and they should put scientific stories in the context of a broader process of nonlinear discovery. According to Pigliucci, journalists can and should be educating themselves on the research process and the science of logical conclusion-making, giving themselves the tools to provide critical and investigative coverage when needed. At the same time, scientists should undertake proper media training so that they are comfortable communicating their work to journalists or press officers.“I don''t think there is any fundamental flaw in how we communicate science, but there is a systemic flaw in the sense that we simply do not educate people about logical fallacies and cognitive biases,” Pigliucci said, advising that scientists and communicators alike should be intimately familiar with the subjects of philosophy and psychology. “As for bunk science, it has always been with us, and it probably always will be, because human beings are naturally prone to all sorts of biases and fallacious reasoning. As Carl Sagan once put it, science (and reason) is like a candle in the dark. It needs constant protection and a lot of thankless work to keep it alive.”  相似文献   

7.
Over the last seven years, a major debate has arisen over whether human cloning should remain legal in the United States. Given that this may be the ‘first real global and simultaneous news story on biotechnology’ (Einsiedel et al., 2002, p. 313), nations around the world have struggled with the implications of this newly viable scientific technology, which is often also referred to as somatic cell nuclear transfer. Since the successful cloning of Dolly the sheep in 1997, and with increasing media attention paid to the likelihood of a successful human reproductive clone coupled with research suggesting the medical potential of therapeutic cloning in humans, members of the scientific community and Christian fundamentalist leaders have become increasingly vocal in the debate over U.S. policy decisions regarding human cloning (Wilmut, 2000). Yet despite a surfeit of public opinion polls and widespread opining in the news media on the topic of human cloning, there have been no empirical studies comparing the views of scientists and Christian fundamentalists in this debate (see Evans, 2002a for a recent study of opinion polls assessing religion and attitudes toward cloning).

In order to further investigate the values that underlie scientists' and Christian fundamentalist leader's understanding of human cloning, as well as their differential use of language in communicating about this issue, we conducted an open-ended, exploratory survey of practicing scientists in the field of molecular biology and Christian fundamentalist pastors. We then analyzed the responses from this survey using qualitative discourse analysis. While this was not necessarily a representative sample (in quantitative terms, see Gaskell & Bauer, 2000) of each of the groups and the response rate was limited, this approach was informative in identifying both commonalities between the two groups, such as a focus on ethical concerns about reproductive cloning and the use of scientific terminology, as well as significant differences including concerns over ‘playing God’ for the Christian pastors, focus on therapeutic cloning by scientists, and subtle but informative differences between the two groups in their use of scientific terminology and their interpretations of human cloning as scientific progress.  相似文献   

8.
Abstract.  Misinformation erodes the legitimacy of any public debate. Since the start of human embryonic stem cell research deliberations in the USA, misinformation concerning the nature of human embryos, their availability for research, and the potential for using them to develop new medical therapies have been widespread and persistent. Basic facts, well understood by physicians and biologists, have been so misstated and misrepresented in the news media and political speeches that the general public has been put in a state of constant uncertainty. The solution to the present troubling condition is better education in the form of diligent, honest, and complete scientific disclosure by responsible scientists and physicians; and more care given to accurate reporting by news media. Several key aspects of newly emerging embryonic and non-embryonic stem cell technologies are defined and discussed as they relate to the debate over the use of human embryos for medical research. An important topic for consideration is how to disclose with clarity the scientific basis for human embryonic life. Thereafter, failings in proposed technologies for developing new therapies with human embryonic stem cells, that have been grossly under-reported, are examined. Finally, properties of adult stem cells are presented in contradistinction to embryonic stem cells, both in terms of adult stem cells as a scientifically better alternative to embryonic stem cells and in terms of the technological challenges that must be overcome to realize the potential of adult stem cells for new medical therapies.  相似文献   

9.
Over the last seven years, a major debate has arisen over whether human cloning should remain legal in the United States. Given that this may be the 'first real global and simultaneous news story on biotechnology' (Einsiedel et al., 2002, p.313), nations around the world have struggled with the implications of this newly viable scientific technology, which is often also referred to as somatic cell nuclear transfer. Since the successful cloning of Dolly the sheep in 1997, and with increasing media attention paid to the likelihood of a successful human reproductive clone coupled with research suggesting the medical potential of therapeutic cloning in humans, members of the scientific community and Christian fundamentalist leaders have become increasingly vocal in the debate over U.S. policy decisions regarding human cloning (Wilmut, 2000). Yet despite a surfeit of public opinion polls and widespread opining in the news media on the topic of human cloning, there have been no empirical studies comparing the views of scientists and Christian fundamentalists in this debate (see Evans, 2002a for a recent study of opinion polls assessing religion and attitudes toward cloning). In order to further investigate the values that underlie scientists' and Christian fundamentalist leader's understanding of human cloning, as well as their differential use of language in communicating about this issue, we conducted an open-ended, exploratory survey of practicing scientists in the field of molecular biology and Christian fundamentalist pastors. We then analyzed the responses from this survey using qualitative discourse analysis. While this was not necessarily a representative sample (in quantitative terms, see Gaskell & Bauer, 2000) of each of the groups and the response rate was limited, this approach was informative in identifying both commonalities between the two groups, such as a focus on ethical concerns about reproductive cloning and the use of scientific terminology, as well as significant differences including concerns over 'playing God' for the Christian pastors, focus on therapeutic cloning by scientists, and subtle but informative differences between the two groups in their use of scientific terminology and their interpretations of human cloning as scientific progress.  相似文献   

10.
In France, over 45 millions people watch TV every day for more than 3 hours. Science and image get well together since most TV watchers trust this media and rely on it (more than on any other source) for their scientific information. This emphasizes the power of images, which do not always deliver information, but can be naively regarded as creating communication. Image is necessary and an event which does not generate images is a non-event. Images are more than just a support for scientific messages: technologies have produced an enormous amount of images which allow us to uncover the mysteries of the world and Universe, their beauty and delicacy. We can be fascinated by the discovery of the invisible world which surrounds us, and science has truly generated artistic masterpieces even though we should remember that its primary goal is to understand the world rather than to create images.  相似文献   

11.
The Brazilian Federal Senate created a Parliamentary Inquiry Commission (CPI) to investigate the Bolsonaro government's irregularities in the management of the COVID-19 pandemic. One of the cases that drew attention was the research conducted by Prevent Senior, a private health insurance company, on the early treatment of COVID-19. The article analyzes the scientific validity of the research and the ethical problems related to its implementation. It is based on analysis of Prevent Senior's report of the clinical study, the Brazilian and USA clinical trial registries, the Senate's CPI report, and on the information reported by the media. This case of scientific fraud and political-ideological bias exemplifies how Prevent Senior, using a questionable protocol to enhance its reputation and gain government support, was instrumental in building the “early treatment” narrative for COVID-19, and shows how it served as a basis for a government public policy that promoted the use of ineffective drugs.  相似文献   

12.
Life satisfaction refers to a somewhat stable cognitive assessment of one’s own life. Life satisfaction is an important component of subjective well being, the scientific term for happiness. The other component is affect: the balance between the presence of positive and negative emotions in daily life. While affect has been studied using social media datasets (particularly from Twitter), life satisfaction has received little to no attention. Here, we examine trends in posts about life satisfaction from a two-year sample of Twitter data. We apply a surveillance methodology to extract expressions of both satisfaction and dissatisfaction with life. A noteworthy result is that consistent with their definitions trends in life satisfaction posts are immune to external events (political, seasonal etc.) unlike affect trends reported by previous researchers. Comparing users we find differences between satisfied and dissatisfied users in several linguistic, psychosocial and other features. For example the latter post more tweets expressing anger, anxiety, depression, sadness and on death. We also study users who change their status over time from satisfied with life to dissatisfied or vice versa. Noteworthy is that the psychosocial tweet features of users who change from satisfied to dissatisfied are quite different from those who stay satisfied over time. Overall, the observations we make are consistent with intuition and consistent with observations in the social science research. This research contributes to the study of the subjective well being of individuals through social media.  相似文献   

13.
姚良同  杜秉海  丁延芹  王冰  周波 《生物磁学》2009,(16):3139-3140,3088
通过对我院生物工程专业本科生的2项PGPR实验,对不同培养基对实验效果的影响进行了初步研究。实验证明,采用不同的培养基,对实验效率和实验效果影响很大;科学合理的选择培养基,能够提高实验结果的准确性和可靠性,可以大幅度地缩短实验时间,提高实验效率,通过本实验的进行达到了引导学生开阔思路,科学合理地设计试验方案,提高综合实验能力的目的。  相似文献   

14.
The limited international resources for economic aid and conservation can only mitigate poverty and losses of biodiversity. Hence, developing nations must establish the capacity to resolve their problems. Additionally, policy-makers and donors need to obtain scientific input on issues such as global change and ecosystem services. We propose that for nations rich in biodiversity, ecosystem services derived from bioprospecting, or drug discovery, could contribute to economic development. In the case where unstudied samples are shipped abroad for research, the chances of obtaining royalties are infinitesimally small. Therefore developing nations will only realize benefits from bioprospecting through in-country research on their own biodiversity. Policy-makers and donors have failed to appreciate the value of this approach. In order to provide an example of the inherent links between conservation and sustainable economic development, we initiated a drug discovery effort in Panama that emphasizes local benefit. As much of the drug discovery process as possible is conducted in Panamanian laboratories, providing jobs dependent on intact biodiversity and enhancing local research and training. In short, research, plus the spin-offs from research, provide immediate and long-lasting benefits to Panama. The connection between conservation and development has been highlighted in publicity about the project in Panama’s urban media. This provides a constructive alternative to the perception the among the urban populace that economic development inevitably competes with conservation. In summary, our program uses biodiversity to promote human health as well as to support research capacity, economic development and conservation within Panama. The program provides an example of the widely recognized but little developed concept of bioprospecting research as an ecosystem service.  相似文献   

15.
Ego-depletion, a psychological phenomenon in which participants are less able to engage in self-control after prior exertion of self-control, has become widely popular in the scientific community as well as in the media. However, considerable debate exists among researchers as to the nature of the ego-depletion effect, and growing evidence suggests the effect may not be as strong or robust as the extant literature suggests. We examined the robustness of the ego-depletion effect and aimed to maximize the likelihood of detecting the effect by using one of the most widely used depletion tasks (video-viewing attention control task) and by considering task characteristics and individual differences that potentially moderate the effect. We also sought to make our research plan transparent by pre-registering our hypotheses, procedure, and planned analyses prior to data collection. Contrary to the ego-depletion hypothesis, participants in the depletion condition did not perform worse than control participants on the subsequent self-control task, even after considering moderator variables. These findings add to a growing body of evidence suggesting ego-depletion is not a reliable phenomenon, though more research is needed that uses large sample sizes, considers moderator variables, and pre-registers prior to data collection.  相似文献   

16.
Increasingly scientists and governmental policymakers find themselves leaving their laboratories and office cubicles to share information and decision making with the general public. Contributing in large part to the development of science communication via the mass media has been the Human Genome Project (HGP). Examining the development of the HGP in the United States beginning with the early 1970s helps to establish why and how the general public has become a major player in science policy in the United States during the past quarter century, especially in regard to the ethical, legal, and social implications of research on human genetics. Calling into question the technological imperative--the idea that all things scientific must be pursued without question--the general public came to realize that exerting control over research funding is the key to participating in the scientific process.  相似文献   

17.
18.
Citizen science (CS) has evolved over the past decades as a working method involving interested citizens in scientific research, for example by reporting observations, taking measurements or analysing data. In the past, research on animal behaviour has been benefitting from contributions of citizen scientists mainly in the field of ornithology but the full potential of CS in ecological and behavioural sciences is surely still untapped. Here, we present case studies that successfully applied CS to research projects in wildlife biology and discuss potentials and challenges experienced. Our case studies cover a broad range of opportunities: large‐scale CS projects with interactive online tools on bird song dialects, engagement of stakeholders as citizen scientists to reduce human–wildlife conflicts, involvement of students of primary and secondary schools in CS projects as well as collaboration with the media leading to successful recruitment of citizen scientists. Each case study provides a short overview of the scientific questions and how they were approached to showcase the potentials and challenges of CS in wildlife biology. Based on the experience of the case studies, we highlight how CS may support research in wildlife biology and emphasise the value of fostering communication in CS to improve recruitment of participants and to facilitate learning and mutual trust among different groups of interest (e.g., researchers, stakeholders, students). We further show how specific training for the participants may be needed to obtain reliable data. We consider CS as a suitable tool to enhance research in wildlife biology through the application of open science procedures (i.e., open access to articles and the data on publicly available repositories) to support transparency and sharing experiences.  相似文献   

19.
A highly interoperable informatics infrastructure rapidly emerged to handle genomic data used for phylogenetics and was instrumental in the growth of molecular systematics. Parallel growth in software and databases to address needs peculiar to phylophenomics has been relatively slow and fragmented. Systematists currently face the challenge that Earth may hold tens of millions of species (living and fossil) to be described and classified. Grappling with research on this scale has increasingly resulted in work by teams, many constructing large phenomic supermatrices. Until now, phylogeneticists have managed data in single‐user, file‐based desktop software wholly unsuitable for real‐time, team‐based collaborative work. Furthermore, phenomic data often differ from genomic data in readily lending themselves to media representation (e.g. 2D and 3D images, video, sound). Phenomic data are a growing component of phylogenetics, and thus teams require the ability to record homology hypotheses using media and to share and archive these data. Here we describe MorphoBank, a web application and database leveraging software as a service methodology compatible with “cloud” computing technology for the construction of matrices of phenomic data. In its tenth year, and fully available to the scientific community at‐large since inception, MorphoBank enables interactive collaboration not possible with desktop software, permitting self‐assembling teams to develop matrices, in real time, with linked media in a secure web environment. MorphoBank also provides any user with tools to build character and media ontologies (rule sets) within matrices, and to display these as directed acyclic graphs. These rule sets record the phylogenetic interrelatedness of characters (e.g. if X is absent, Y is inapplicable, or X–Z characters share a media view). MorphoBank has enabled an order of magnitude increase in phylophenomic data collection: a recent collaboration by more than 25 researchers has produced a database of > 4500 phenomic characters supported by > 10 000 media.
© The Willi Hennig Society 2011.  相似文献   

20.
Irrespective use of chemical pesticides has led, over the last decades, to several problems such as soil, water and food sources pollution, and generation of a selective pressure causing the emergence of pest resistance. Consequently, researchers have been focusing more on the use of biological control as an alternative strategy. Bacillus thuringiensis (Bt) is one of the most widely studied bacteria in industrial biotechnology and commercialized as an environmentally sustainable biopesticide. Therefore, a huge interest has been allocated for research on this bacterium and several scientific studies have been published on the issue. In this review, we tried to evaluate the scientific production over the last thirty years, for the first time, in terms of number and geographical origin, focusing particularly on B. thuringiensis kurstaki (Btk). It is worth emphasizing that the Btk process engineering involving factors affecting growth, sporulation and toxin formation yields by Bt has not been fully investigated in previous reviews. To this end, the second section of this review provided an updated survey about these conditions, such as nutritional requirements, culture media and fermentation technologies. Relevant information was collected in comparative tables that could be very useful for the scientific community interested in Btk-based biopesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号