首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure of T94, a CD4+ V beta 8-expressing murine Th cell clone, or immediately ex vivo CD4+ T cells to deaggregated, bivalent antibodies specific for either the TCR or CD3 failed to induce an increase in [Ca2+]i, or activation of phosphatidylinositol hydrolysis unless cross-linked with a secondary anti-Ig antibody. In contrast, we show that a combination of two mAb directed against different components of the TCR/CD3 complex (145.2C11, anti-CD3 epsilon and F23.1, anti-V beta 8) successfully induce second messenger formation, that is, without any requirement for a secondary antibody. This requirement for either a secondary antibody or two independent bivalent antibodies to activate second messenger production in T cells suggested that the signal transduction apparatus may be activated by multiple TCR/CD3 complexes being brought together on the T cell surface. This was supported by the observation that conditions inducing increased T cell [Ca2+]i through the TCR/CD3 complex also resulted in aggregation of the TCR/CD3 complex on the T cell surface. Conversely, binding of anti-TCR/CD3 antibodies to the T cell under conditions that did not induce increased [Ca2+]i also failed to induce surface TCR/CD3 redistribution. Cross-linking of the CD4 accessory molecule on T94 also resulted in increased [Ca2+]i, with kinetics similar to those observed after TCR/CD3 oligomerization. CD4 is involved in the recognition of invariant regions of MHC class II during Ag presentation and has been proposed to be associated with TCR/CD3 in the absence of Ag. Aggregation of TCR/CD3 and subsequent second messenger formation was achieved by combinations of mAb to distinct determinants within the complex due to the stable association of these determinants within the T cell membrane. We therefore assessed the functional association of CD4 with the TCR/CD3 complex by examining whether a combination of mAb directed against CD4 and CD3 or TCR induced second messenger formation. We found that anti-CD4 in combination with F23.1 or with 145.2C11 failed to induce increases in [Ca2+]i. Furthermore, mAb to CD4 failed to inhibit the increase in [Ca2+]i observed with the combination of 145.2C11 and F23.1. We therefore conclude that CD4 is not stably associated with TCR or CD3 in the absence of Ag/MHC class II composites.  相似文献   

2.
Cytoskeletal involvement in the response to TCR/CD3 ligation and in signal transduction was investigated in a murine Th cell type 2 clone. Cells coated with the hamster anti-CD3 mAb, 145-2C11 (2C11 mAb), and exposed to goat anti-hamster demonstrated an increase in polymerized actin as well as an increase in inositol phospholipid hydrolysis mediated by activation of phospholipase C. Pretreatment with cytochalasins (Cyt) (D or B), drugs that interact with cellular actin, prevented actin polymerization, and augmented the initial rate and total amount of inositol phosphates produced. Drugs modifying microtubule function were ineffective. The intracellular Ca2+ rise attributed to InsP3 and InsP4 generated in response to CD3 perturbation was augmented by CytD. CytD treatment did not affect inositol phosphate generation resulting from the stimulation of guanine nucleotide-binding proteins with aluminium tetrafluoride, indicating that the action of CytD was specific for receptor-mediated inositol phospholipids. CytD decreased the rate of anti-CD3-induced receptor internalization. These data suggest that the assembly of microfilaments plays a role in CD3 internalization and that a CytD-sensitive mechanism uncouples the TCR/CD3 complex from phospholipase C-mediated signaling.  相似文献   

3.
We examined the role of MHC class II molecules in transducing signals to activated human T cells. Cross-linking of MHC class II molecules synergized with submitogenic amounts of anti-CD3 mAb in causing proliferation and secretion of the cytokines IL-2, IL-3, IFN-gamma, and TNF-alpha by MHC class II-alloreactive T cell lines. Signaling via MHC class II molecules in T cells resulted in activation of tyrosine kinases, in generation of inositol phosphates, and in Ca2+ mobilization that was abrogated by the tyrosine kinase inhibitor herbimycin A. Thus, like signaling via TCR/CD3, signaling via MHC class II molecules involved tyrosine kinase-dependent activation of phospholipase C, resulting in phosphoinositol turnover and Ca2+ flux. However the signaling pathways coupled to MHC class II molecules and to TCR/CD3 differed, because engagement of the transmembrane phosphatase CD45 inhibited Ca2+ fluxes triggered via TCR/CD3 but not Ca2+ fluxes triggered via MHC class II molecules.  相似文献   

4.
Activation of T cells by lectins or mAb directed at components of the Ag-specific TCR results in hydrolysis of phosphorylated derivatives of phosphatidylinositol and an increase in intracellular free calcium concentration (Cai). We report that cholera toxin, which activates adenylate cyclase by ADP ribosylation of a G protein, also reduces both inositol phosphate (IP) production and the rise in Cai in Con A-stimulated murine T cells. We find that similar dose-dependent inhibitory effects can be induced by each of four other agents that raise cAMP levels in such cells: forskolin, PGE2, 2-chloroadenosine, and isoproterenol. The effects of these agents on IP production are reversible and therefore do not simply reflect cytotoxicity. Activation by PHA and by antibody to the T3-epsilon-chain of the TCR complex are also inhibited by agents that increase intracellular cAMP. Thus, changes in cAMP concentration seem to regulate both IP production and the Ca2+ response, two early components of the mitogen-induced activation process.  相似文献   

5.
Activation of resting human CD4+ T cells mediated by mAb ligation of the TCR/CD3 complex requires costimulatory signals to result in proliferation; these can be provided by intercellular cell adhesion molecule-1 (ICAM-1, CD54) a natural ligand of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18). We analyzed early signaling events involved in T cell activation to determine the contribution by the LFA-1/ICAM-1 interaction. We studied in detail the hydrolysis of phosphatidylinositol(4,5)bisphosphate and intracellular levels of free Ca2+ during stimulation with beads coated with the CD3 mAb OKT3 alone or in combination with purified ICAM-1 protein. Our investigations show no response to LFA-1/ICAM-1 alone, but that costimulation by LFA-1/CAM-1 interaction induces prolonged inositol phospholipid hydrolysis (up to 4 h), resulting in generation of both inositol(1,4,5)phosphate3 and inositol(1,3,4,5)phosphate4 and their derivatives. Based on studies with cycloheximide, this costimulatory effect of prolonged inositol phospholipid hydrolysis appears dependent in part on de novo protein synthesis. A sustained increase in intracellular levels of free Ca2+ level is also observed after LFA-1/ICAM-1 costimulation, which is at least partly dependent on extracellular sources of Ca2+. Kinetic studies indicate that costimulation requires a minimal period of 4 h of LFA-1/ICAM-1 interaction to provide maximal costimulation for OKT3-mediated T cell proliferation. Thus, the necessary costimulation required for OKT3-mediated proliferation in this model system may be provided by an extended LFA-1/ICAM-1 interaction that in combination with OKT3 mAb leads to signal-transducing events, resulting in prolonged phospholipase C activation and phosphatidylinositol(4,5)bisphosphate hydrolysis, and a sustained increase in intracellular levels of free Ca2+.  相似文献   

6.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

7.
Ag recognition of Lyt-2 (CD8)-positive T lymphocytes requires the presentation by APC of a suitably processed Ag in association with MHC class I molecules. In previous studies we have obtained evidence that, for optimal activation, both the alpha beta-TCR and Lyt-2 have to participate in this recognition process. In the current study we investigate the functional consequences of limited cross-linking of these cell surface molecules by using soluble, dimeric hetero- and homoconjugates of mAb to Lyt-2 and to the TCR beta-chain (F23.1). Heterologous cross-linking of Lyt-2 to the TCR induced a vigorous, selective Lyt-2+ T cell proliferative response. Functionally active cytotoxic cells were generated, and a high frequency of responding cells was observed in limiting dilution analyses. In contrast, homologous TCR cross-linking initiated a less pronounced proliferation with a relatively low frequency of response, whereas Lyt-2 cross-linking resulted in no cellular proliferation. Significant T cell activation occurred with exposure to anti-Lyt-2: F23.1 mAb dimers at concentrations an order of magnitude lower than those required for stimulation by F23.1:F23.1 mAb dimers. The induction of proliferation by mAb dimers occurred in the absence of Fc components and in rigorously APC depleted, purified T cell preparations. Effective stimulation of resting T cells could be induced also by heterodimers of monovalent Fab fragments. Heterologous cross-linking of Lyt-2 to the TCR was superior to homologous TCR cross-linking primarily with respect to proliferation in IL-2 containing media and to IL-2R expression, whereas proliferation in response to other lymphokines and the production of IL-2 itself were similar under both cross-linking regimens. Thus, when linked to the TCR, Lyt-2 contributed a strong, positive signal toward IL-2-dependent growth of resting T cells. We assume that in the case of Ag-driven T cell activation, the class I MHC molecule acts as the physiologic cross-linking ligand for Lyt-2 and the TCR.  相似文献   

8.
The MHC class I Qa-2 Ag are attached to the cell surface by a glycanphosphatidylinositol (GPI) anchor. Crosslinking of Qa-2 and several other cell surface Ag attached by the GPI linkage has been shown to lead to cell activation. We have developed 10 new anti-Qa-2 mAb and characterized their capacity to induce proliferation of spleen cells. In the absence of anti-Ig-mediated crosslinking, none of the mAbs alone could induce activation. However, mAb 23.1 which reacts with the alpha 3 domain of Qa-2, when combined with most of the other mAbs (alpha 1, alpha 2 domain reactive), activated cells in the absence of anti-Ig crosslinking. The mAb pair 23.1 plus 24.16 was the most proficient and induced proliferation in the absence of any exogenous second signals. Responses were greatly enhanced and equivalent to those seen with anti-CD3 by the addition of phorbol myristate acetate (PMA). Ionomycin, rIL-2, or rIL-4 also potentiated anti-Qa-2 responses but less efficiently than PMA. Significant strain variation in the magnitude Qa-2-mediated proliferative responses was observed correlating with the levels of Qa-2 expressed on the cell surface. Crosslinking of Qa-2 molecules by the mAb combinations was required because monovalent Fab fragments failed to activate cells. F(ab')2 fragments of mAb 23.1 plus 24.16 induced vigorous proliferation indicating that accessory cell presentation of the mAb via Fc receptors was not required. Immobilized (plate bound) anti-Qa-2 mAb induced proliferation suggesting that the Qa-2 pathway may be distinct from that of other GPI molecules such as Thy-1 and Ly-6. Populations enriched for T cells (approximately 95%) responded as well as whole spleen cells, whereas B lymphocytes failed to proliferate to anti-Qa-2. Both CD4+ and CD8+ cells were activated following crosslinking of Qa-2. Finally, T cell activation mediated by Qa-2 induced elevation of [Ca2+]i, IL-2R expression, and the release of IL-2. These data demonstrate that crosslinking of Qa-2 on T lymphocytes represents a potent pathway for inducing cell activation.  相似文献   

9.
Three monoclonal antibodies (mAb) 2D1, 3B9, and 3B12 were produced by immunizing BALB/c mice with JURKAT cells. These mAb induce comodulation of the TCR/CD3 complex expressed on JURKAT cells, but do not react with the CD3- JURKAT variant, J.RT3.T3.1. Immunoprecipitation studies with detergent-solubilized JURKAT cell lystes indicate that these mAb react with proteins having characteristics of the TCR molecules. Their low reactivity with peripheral blood mononuclear cells (PBMC) and lack of reactivity with other CD3+ T cell lines suggest that they may be anti-idiotypic mAb. Results from binding inhibition assays, reactivity with PBMC, and generation of transmembrane signals suggest that these three anti-TCR mAb recognized different epitopes on the TCR beta chain of JURKAT cells. Although the three mAb are capable of inducing the production of inositol phosphates and cytosolic free Ca2+ increase in JURKAT cells, their stimulatory capacities vary and are lower than that observed by anti-CD3 antibody (OKT3) stimulation. However, crosslinking these mAb with rabbit antimouse immunoglobulins potentiates the stimulatory response to comparable levels induced by OKT3. These mAb could be useful as tools to study V beta 8+ T cells in relation to antigen-specific activation.  相似文献   

10.
The vast majority of circulating lymphocytes that express the alpha,beta TCR in association with CD3 also express either CD4 or CD8 molecules, which are thought to act as important accessory structures in HLA class II- and I-restricted T cell functions, respectively. In the current study alpha,beta TCR+ clones devoid of detectable CD4 or CD8 were generated by repeated stimulation of fresh CD3+,CD4-,CD8- cells with an allogeneic lymphoblastoid cell line in the presence of conditioned medium containing IL-2. Except for the absence of CD4 and CD8, which was associated with undetectable levels of CD4 and CD8 mRNA, the clones were phenotypically indistinguishable from classical CD3+,alpha,beta TCR+ cells. Furthermore, they mediated potent cytolysis of their specific stimulator line but did not kill irrelevant LCL or NK-sensitive targets. mAb to CD3 and the alpha,beta TCR inhibited cytolysis, suggesting that the clones use the TCR/CD3 complex to recognize and respond to their targets. mAbs to CD2 and CD11a also inhibited cytolysis, indicating that the clones use these accessory molecules to interact with their targets. Finally, cytolysis was inhibited by an HLA-A,B,C framework-specific mAb (W6/32) as well as a mAb (MA2.1) specific for an HLA-A2 epitope. These results demonstrate that CD3+,alpha,beta TCR+,CD4-,CD8- cytotoxic clones can be generated from the peripheral blood of healthy adults, and use their TCR/CD3 complexes to function in an HLA class I-restricted manner.  相似文献   

11.
12.
13.
CTL/HTL hybrid clones provide a unique system that allows detailed analysis of the role of Lyt-2, L3T4, and other structures involved in T cell functions. We have demonstrated previously that the fusion of cloned murine CTL and helper T lymphocytes with defined specificity generated hybrid cells that expressed both Lyt-2 and L3T4 as well as two TCR. Data obtained with these hybrid clones demonstrated that cytolysis is closely linked to the CTL TCR. We have analyzed the effects of anti-Lyt-2 and anti-L3T4 as well as anti-TCR mAb on cytolysis, proliferation, and lymphokine release by a number of hybrid clones. We found that anti-Lyt-2 and anti-L3T4 mAb were able to inhibit both proliferation and lymphokine release by the hybrid clones in response to stimulation of either the CTL or helper T lymphocyte parent TCR. In contrast, only anti-Lyt-2 and anti-CTL TCR mAb were able to block cytolysis of target cells bearing the Ag recognized by the CTL TCR. These results provide further evidence that cytolysis is closely linked to the CTL TCR and that Lyt-2 and L3T4 have more than a passive role as accessory molecules on the surface of T lymphocytes.  相似文献   

14.
T-cell receptor (TCR) internalization occurs via TCR recognition of the peptide/MHC molecule complex on antigen presenting cell (APC). In this study, the requirements for inducing the internalization of TCR molecules on Ld major histocompatibility complex (MHC) class I-restricted T-cells were investigated with 2C cytotoxic T-lymphocyte (CTL) clones with defined peptides as the antigen. To evaluate the function of the transmembrane region of TCR alphabeta chains in TCR internalization, we generated T-cell transfectants expressing the wild type and glycosylphosphatidyl inositol (GPI)-linked form of 2C TCR. Among all peptides forming proper ligands to 2C TCR, only the Qp2Ca peptide induced TCR internalization, which was known to have the highest affinity to both Ld MHC class I molecules and TCR in association with Ld molecules. Such TCR internalization was not observed in cells expressing the GPI-linked form of 2C TCR. Furthermore, the expression of CD8 coreceptor and Thy-1 accessory molecules were both not required for Qp2Ca-induced TCR internalization, and these molecules did not accompany TCR internalization. Altogether, these results suggest that TCR internalization on CTL is not a prerequisite for CTL function.  相似文献   

15.
The requirements for activation of the lytic machinery through CD2 of TCR gamma delta+/CD3+ cells were examined, by utilizing bispecific heteroconjugates containing anti-CD2 mAb cross-linked to anti-DNP. Contrary to the CD2 activation requirements in TCR alpha beta+/CD3+ cells, cytotoxic activity in TCR gamma delta+/CD3+ clones and TCR-/CD3- NK cell clones can be induced by heteroconjugates containing a single anti-CD2 (OKT11.1) mAb. Activation of TCR gamma delta+/CD3+ cells via CD2 is independent of heteroconjugates binding to CD16 (Fc gamma RIII), because heteroconjugates prepared from Fab fragments induced equal levels of lysis. Moreover, anti-CD16 mAb did not inhibit triggering via CD2 in TCR gamma delta+/CD3+ cells. In TCR-/CD3- NK cells, however, induction of cytotoxicity via CD2 is co-dependent on interplay with CD16. Anti-CD3 mAb blocked the anti-CD2 x anti-DNP heteroconjugate-induced cytotoxicity of TCR gamma delta+/CD3+ cells, indicating a functional linkage between CD2 and CD3 on these cells. We conclude that induction of lysis via CD2 shows qualitatively different activation requirements in TCR gamma delta+/CD3+, TCR alpha beta+/CD3+ CTL and TCR-/CD3- NK cells.  相似文献   

16.
T cell clones were generated from the peripheral blood of rhesus monkeys that had been immunized with a soluble Mr 185,000 Ag (SAI/II) derived from Streptococcus mutans. The clones were CD3+ CD8+ CD4- alpha beta TCR+ and were specifically stimulated to proliferate by SAI/II. The proliferative responses of the cloned cells were class I restricted, as demonstrated by reconstitution of the cloned T cells with APC matched at various MHC class I and II loci, as well as by inhibition with anti-class I and not anti-class II mAb. The function of the CD8+ cloned cells was examined in vitro for their effect on antibody synthesis by Ag-stimulated CD4+ cells and B cells from immunized animals. Indeed, four of the five clones suppressed SAI/II-specific IgG antibody synthesis when activated with SAI/II and the appropriate MHC-matched APC. Although activation of the suppressor clones was Ag specific, the effector function of the suppression of antibody synthesis was Ag nonspecific. The latter was probably mediated by lymphokines and, indeed, the culture supernatant generated by stimulating the cloned CD8+ cells with anti-CD3 mAb suppressed both the specific and nonspecific antibody synthesis. Cytotoxicity studies showed that all five CD8+ clones showed a low level of lectin-dependent cytotoxicity. However, because four of the five clones expressed significant suppression of antibody synthesis, the suppressor activity was unlikely to be a function of the weak cytotoxicity. The results suggest that immunization of rhesus monkeys with a soluble streptococcal Ag induced CD8+ alpha beta TCR+ T cell clones that show SAI/II-specific, MHC class I-restricted proliferative responses and nonspecific down-regulatory function of in vitro antibody synthesis.  相似文献   

17.
Antigen immunoglobulin E-mediated secretion of histamine from RBL-2H3 cells is associated with substantial hydrolysis of membrane inositol phospholipids and a rise in the concentration of cytosol Ca2+ (calcium signal). Such responses differed among cloned variant lines of the RBL-2H3 cell line from undetectable (1A3 bromodeoxyuridine-resistant (BUDRR), 2B1 BUDRR, and 1B3 BUDRR lines) to about 80% of those in the parent RBL-2H3 cells. In all but one line (1B3 thioguanine-resistant (TgR)), the intensities of the phosphoinositide response and of the calcium signal were correlated with the secretory response. The 1B3 TgR line had no detectable calcium signal (as measured by quin 2 fluorescence or uptake of 45Ca2+) but paradoxically showed modest rates of hydrolysis of inositol phospholipids and of secretion. The responses of the 1B3 TgR line were, however, dependent on the presence of external Ca2+ ions. The induction of secretion with antigen, therefore, was invariably associated with the hydrolysis of inositol phospholipids, but it was not necessarily associated with a change in concentration of cytosol Ca2+. All antigen unresponsive clones could secrete when synergistic signals were induced by exposure to the Ca2+ -ionophore, A23187 and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate. These lines, otherwise, had immunoglobulin E receptors and had no obvious defect in their capacity to synthesize the inositol phospholipids or in their phenotypic expression of phospholipase C as measured in cell extracts. One finding of possible relevance to the role of guanosine 5'-triphosphate-regulatory proteins in the activation of phospholipase C was the inability of one antigen-nonresponsive line to respond to NaF (in intact cells) or to guanosine 5'-(3-O-thio)triphosphate (in electrically permeabilized cells).  相似文献   

18.
Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon Ag-specific activation. BLT-serine esterase secretion could also be induced by the Fc gamma+ target cell Daudi in the presence of mAb specific for the TCR/CD3 complex, CD2, or the T cell activation Ag Tp 103. In addition, anti-CD3 and a mitogenic combination of anti-CD2 mAb, induced secretion of BLT-serine esterase in the absence of target cells, whereas anti-Tp 103 failed to do so. The secreted BLT-serine esterase activity induced by the various ligands was inhibited by the serine esterase inhibitors PMSF and m-ABA, but not by N-alpha-p-tosyl-L-lysine chloromethyl ketone. Significant BLT-serine esterase activity was induced by target cells or soluble anti-CD3 in the absence of extracellular Ca2+ ions, provided that extracellular Mg2+ ions were present. The cytotoxic activities by the human CTL clones were completely blocked under these conditions. All ligands that induced BLT-serine esterase secretion in the absence of extracellular Ca2+, induced a transient rise of intracellular Ca2+. Soluble anti-CD3 mAb did not induce a transient rise in intracellular Ca2+ or secretion of BLT serine esterase in CTL preincubated for 2 h with 5 mM EGTA. These findings indicate that mobilization of intracellular Ca2+ in human CTL clones is required for induction of secretion of BLT-serine esterase.  相似文献   

19.
We investigated the mechanisms of murine T cell activation by streptococcal pyrogenic exotoxin type A (SPE A), focusing on the role of MHC class II molecules on accessory cells (AC) and V beta usage in alpha beta TCR of SPE A-reactive T cells in comparison with staphylococcal enterotoxin B-reactive T cells. L cells transfected with I-Ab genes functioned as effective AC for SPE A-induced responses by C57BL/6 T cells, proliferation, and IL-2 production, but control L cells were not effective AC. Anti-I-Ab mAb inhibited the SPE A-induced responses. Staphylococcal enterotoxin B-induced C57BL/6 T cell blasts were composed of cells bearing V beta 3, members of the V beta 8 family, and V beta 11. Most of the SPE A-induced T cell blasts (about 80%) bore V beta 8.2. mAb reactive to V beta 8.2 markedly inhibited SPE A-induced T cell responses. Apparently, SPE A activates mainly T cells bearing V beta 8.2 in physical association with MHC class II molecules expressed on AC. We also discuss the pathogenic activities of SPE A in relation to toxic shock syndrome.  相似文献   

20.
The mAb F23.1, specific for V beta 8-related determinants on the TCR, was used to study the requirements for TCR cross-linking and for accessory cells (AC) in the induction of proliferation or IL-2 responsiveness in L3T4+ (CD4+) and Lyt-2+ (CD8+) T cells. T cells were exposed in vitro to soluble native F23.1 antibody, to heteroconjugates composed of the Fab fragments of F23.1 linked to Fab fragments of antibodies specific for Ia determinants on AC, or to F23.1 immobilized on an insoluble matrix. Soluble F23.1 antibody-induced proliferation in naive T cells only in the presence of both AC and exogenous IL-2, and these responses were confined to Lyt-2+ T cells. In contrast, heteroconjugates capable of crosslinking F23.1+ TCR to AC surface Ia determinants were capable of inducing proliferation in both L3T4+ and Lyt-2+ T cells in the absence of added lymphokine. Moreover, binding to and presumably multi-valent crosslinking of the TCR by immobilized F23.1 was sufficient to induce proliferation in both Lyt-2+ and L3T4+ T cells in the absence of AC or exogenous IL-2. Further, it was found that the conditions necessary for T cell growth factor secretion paralleled closely those required for induction of T cell proliferation in the absence of added lymphokine, suggesting that production of endogenous lymphokine might be the limiting process for triggering of T cell proliferation. Taken together, these findings suggest that under optimal conditions of TCR cross-linking, TCR occupancy and cross-linking is sufficient to deliver all of the signals necessary to initiate proliferation in naive populations of both L3T4+ and Lyt-2+ T cells. However, when conditions for TCR signaling are suboptimal, as may be the case for normal Ag-mediated stimulation, a role for second signals delivered by AC or exogenous lymphokines can become critical for T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号