首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The loggerhead shrike (Lanius ludovicianus), a songbird that hunts like a small raptor, maintains breeding populations on seven of the eight California Channel Islands. One of the two subspecies, L. l. anthonyi, was described as having breeding populations on six of the islands while a second subspecies, L. l. mearnsi, was described as being endemic to San Clemente Island. Previous genetic studies have demonstrated that the San Clemente Island loggerhead shrike is well differentiated genetically from both L. l. anthonyi and mainland populations, despite the fact that birds from outside the population are regular visitors to the island. Those studies, however, did not include a comparison between San Clemente Island shrikes and the breeding population on Santa Catalina Island, the closest island to San Clemente. Here we use mitochondrial control region sequences and nuclear microsatellites to investigate the population structure of loggerhead shrikes in the Channel Islands. We confirm the genetic distinctiveness of the San Clemente Island loggerhead shrike and, using Bayesian clustering analysis, demonstrate the presence and infer the source of the nonbreeding visitors. Our results indicate that Channel Island loggerhead shrikes comprise three distinct genetic clusters that inhabit: (i) San Clemente Island, (ii) Santa Catalina Island and (iii) the Northern Channel Islands and nearby mainland; they do not support a recent suggestion that all Channel Island loggerhead shrikes should be managed as a single entity.  相似文献   

2.
Abstract.  Hybridization with closely related taxa poses a significant threat to endangered subspecies (e.g. outbreeding depression, inbreeding) and confounds efforts to manage and conserve these taxa through a loss of taxonomic identity, in part because of the practical necessity of defining subspecies in a typological manner. We examined nine morphological characters in 167 post-juvenile museum specimens to determine if loggerhead shrikes Lanius ludovicianus Linnaeus 1766 on San Clemente Island (off the coast of California) remain diagnosable as L. l. mearnsi Ridgway (1903); an island endemic listed as endangered by the United States Fish and Wildlife Service. Four recent shrike specimens from the island were compared to historical specimens using a bivariate scatter plot and a discriminant function (the latter was used to classify recent specimens post hoc). The few recent specimens were not diagnosable as L. l. mearnsi , but instead appear to be intergrades between L. l. mearnsi and L. l. anthonyi Mearns 1898 (the subspecies endemic to Santa Cruz, Santa Catalina, Santa Rosa and Anacapa islands), and are perhaps closer to pure anthonyi . Our data and the species' natural history and distribution suggest that shrikes currently on San Clemente Island are the result of genetic 'swamping' of mearnsi by anthonyi . Under a necessarily typological definition of a subspecies, it is evident that mearnsi is probably no longer diagnosable. However, we conclude that protection of the entire Channel Islands population of the loggerhead shrike would be the best management strategy, as the species has declined drastically throughout the islands.  相似文献   

3.
Based on limited research, the island loggerhead shrike, Lanius ludovicianus anthonyi has been considered a distinct subspecies endemic to the northern California Channel Islands. We used mtDNA control region sequences and microsatellite genotyping to compare loggerhead shrikes from the southern California mainland (L. l. gambeli), San Clemente Island (L. l. mearnsi), and the northern islands (L. l. anthonyi). Habitats on the islands are recovering due to the removal of non-native ungulates on the islands, but may be transitioning to habitats less supportive of loggerhead shrikes, so this evaluation comes at a critical time. We utilized 96 museum specimens that were collected over a century to evaluate both spatial and temporal genetic patterns. Analysis of multilocus microsatellite genotypes indicated that historical specimens of loggerhead shrikes (collected between 1897 and 1986) from the two northern islands of Santa Rosa and Santa Cruz are genetically distinct from adjacent mainland and island shrikes. Birds from Santa Catalina Island showed mixed ancestry and did not cluster with the northern island birds. Historical specimens of L. l. mearnsi from San Clemente Island also showed mixed ancestry. Our study provides evidence that a genetically distinct form of loggerhead shrikes, L. l. anthonyi, occurred on the islands of Santa Rosa and Santa Cruz.  相似文献   

4.
Polymorphic nuclear microsatellite loci were used to characterize genetic variation in contemporary and historic populations of the San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi), an endangered bird with a current population of 30 individuals that is endemic to to one of the California Channel Islands. We also compared the population of the shrike with two contemporary populations of the still abundant subspecies, L. l. gambeli, which live 120 km away on the adjacent mainland. The current population of L. l. mearnsi has 60 per cent of the genetic variation of the mainland shrike populations and is strongly differentiated from them. Comparison of living birds with 19 birds collected in 1915 shows that most of the variation within the island population was lost before the recent 90 per cent decline in population size, and the 20 per cent decrease in variation this century is probably attributable to genetic drift. Mitochondrial DNA control region sequence data from 80 year old specimens show that there may have been limited introgression to L. l. mearnsi, this century, from another island subspecies, L. l. anthonyi, found in the northern Channel Islands. Today, gene flow between L. l. mearnsi and mainland L. l. gambel is very low, even though a few mainland birds visit the island annually. The island subspecies population has evolved sufficient genetic independence to justify ongoing conservation efforts to counter demographic collapse and genetic erosion; the course of genetic erosion can now be monitored non-invasively, as demonstrated by this study, based on DNA amplified from feathers.  相似文献   

5.
6.
Hierarchical genetic structure was examined in the three geographically-defined subspecies of spotted owl (Strix occidentalis) to define relationships among subspecies and quantify variation within and among regional and local populations. Sequences (522 bp) from domains I and II of the mitochondrial control region were analyzed for 213 individuals from 30 local breeding areas. Results confirmed significant differences between northern spotted owls and the other traditional geographically defined subspecies but did not provide support for subspecific level differences between California and Mexican spotted owls. Divergence times among subspecies estimated with a 936 bp portion of the cytochrome b gene dated Northern and California/Mexican spotted owl divergence time to 115,000–125,000 years ago, whereas California/Mexican spotted owl divergence was estimated at 15,000 years ago. Nested clade analyses indicated an association between California spotted owl and Mexican spotted owl haplotypes, implying historical contact between the two groups. Results also identified a number of individuals geographically classified as northern spotted owls (S. o. caurina) that contained haplotypes identified as California spotted owls (S. o. caurina). Among all northern spotted owls sampled (n=131), 12.9% contained California spotted owl haplotypes. In the Klamath region, which is the contact zone between the two subspecies, 20.3% (n=59) of owls were classified as California spotted owls. The Klamath region is a zone of hybridization and speciation for many other taxa as well. Analyses of population structure indicated gene flow among regions within geographically defined subspecies although there was significant differentiation among northern and southern regions of Mexican spotted owls. Among all areas examined, genetic diversity was not significantly reduced except in California spotted owls where the southern region consists of one haplotype. Our results indicate a stable contact zone between northern and California spotted owls, maintaining distinct subspecific haplotypes within their traditional ranges. This supports recovery efforts based on the traditional subspecies designation for the northern spotted owl. Further, although little variation was found between California and Mexican spotted owls, we suggest they should be managed separately because of current isolation between groups.  相似文献   

7.
The newts Triturus vulgaris and Triturus montandoni are sister species that exhibit contrasting levels of intraspecific morphological variation. Triturus vulgaris has a broad Eurasiatic distribution encompassing both formerly glaciated and unglaciated areas and shows substantial morphological differentiation in the southern part of its range, while T. montandoni, confined to the Carpathians, is morphologically uniform. We analysed sequence variation of two mtDNA fragments of the total length of c. 1850 bp in 285 individuals of both species collected from 103 localities. Phylogenetic analysis of 200 unique haplotypes defined 12 major clades, their age estimated at c. 4.5-1.0 million years (Myr). Most of the older clades were found in the southern part of the range, and also in central Europe, mainly in Romania. The distribution of mtDNA clades points to the existence of several glacial refugia, located in the Caucasus region, Anatolia, the Balkan Peninsula, Italy, and more to the north in central Europe. The concordance between mtDNA based phylogeny and the distribution of T. vulgaris subspecies was weak. Triturus montandoni haplotypes did not form a monophyletic group. Instead they were found in six clades, in five of them mixed with T. vulgaris haplotypes, most likely as a result of past or ongoing hybridization and multiple introgression of mtDNA from T. vulgaris to T. montandoni. Patterns of sequence variation within clades suggested long-term demographic stability in the southern groups, moderate and relatively old demographic growth in the populations inhabiting central Europe, and high growth in some of the groups that colonized northern parts of Europe after the last glacial maximum.  相似文献   

8.
Fifty individuals of the endemic Alpine salamander, Salamandra atra, representing 13 populations throughout the range of the two currently recognized subspecies, atra and aurorae, were examined for sequence variation in a large portion (1050 bp) of the mitochondrial cytochrome b gene. We revealed a large number of mitochondrial DNA (mtDNA) haplotypes (10). Interpopulation sequence divergence was very low, ranging from 0 to 3.1%. The relationships among haplotypes were poorly resolved. The divergence time estimate between several mtDNA haplotypes suggested a pre-Pleistocene differentiation approximately 3 million years ago. Moreover, the impact of the Pleistocene glaciations on the phylogeographical patterns appears to have been secondary, although a somewhat reduced genetic variability was found in populations living in areas that were directly affected by the glaciation.  相似文献   

9.
Aim Savanna occupies a substantial part of Africa, being distributed around the two major tropical rain forest blocks in what is referred to as the Savanna Belt. Our current understanding of the genetic structure within species distributed across the Savanna Belt is primarily derived from mammalian taxa, studies of which have revealed a suture zone or transition between northern and east/southern Africa clades in south‐western Kenya and north‐western Tanzania. We conduct a phylogeographic study of the fiscal shrike (Lanius collaris), a polytypic species distributed across the Savanna Belt of Africa and for which morphological and vocal data are in agreement with the suture zone recovered for mammalian taxa, to test the hypothesis of a spatially congruent genetic break across several taxa, including birds. Location Africa, south of the Sahara. Methods We analysed DNA sequences recovered from four loci (one mitochondrial, two autosomal and one Z‐linked) in 66 individuals, representing all recognized subspecies, as well as putatively closely related species. We make use of a combination of tree‐building and population genetic methods to investigate the phylogeographic structure of the fiscal shrike across Africa. Results The fiscal shrike consists of two primary lineages with a strong geographic component: a northern group distributed from southern Tanzania to Senegal, and a southern group distributed from Botswana/Zambia to South Africa with isolated populations in Tanzania and northern Malawi. Unexpectedly, Souza’s shrike (L. souzae) was nested within L. collaris, as the sister group of the southern group. The positions of Mackinnon’s shrike (L. mackinnoni) and that of the São Tomé shrike (L. newtoni) were variable, being either nested within the fiscal shrike or sister to the L. collarisL. souzae clade. Our divergence time analyses suggest that the Lanius collaris species complex started to diversify around 2.2 Ma. Main conclusions Our study reveals a distinct biogeographic pattern for a savanna distributed species in Africa, with the transition between the two primary genetic lineages occurring at a latitude of c. 15–16° S, 10° S further south than shown elsewhere for several mammalian species.  相似文献   

10.
The northern spotted owl (Strix occidentalis caurina) is a threatened subspecies and the California spotted owl (Strix occidentalis occidentalis) is a subspecies of special concern in the western United States. Concern for their continued viability has arisen because of habitat loss caused by timber harvesting. The taxonomic status of the northern subspecies has been the subject of continuing controversy. We investigated the phylogeographical and population genetic structure of northern and California spotted owls with special reference to their region of contact. Mitochondrial DNA (mtDNA) control region sequences confirmed the existence of two well-differentiated lineages connected by a narrow hybrid zone in a region of low population density in north central California. Maximum-likelihood estimates indicated bidirectional gene flow between the lineages but limited introgression outside the region of contact. The lengths of both the mtDNA hybrid zone and the reduced density patch were similar and slightly exceeded estimates of natal dispersal distances. This suggests that the two subspecies were in secondary contact in a hybrid zone trapped by a population density trough. Consequently, the zone of interaction is expected to be geographically stable. We discovered a third, rare clade of haplotypes, which we interpreted to be a result of incomplete lineage sorting; those haplotypes result in a paraphyletic northern spotted owl with respect to the California spotted owl. A congeneric species, the barred owl (Strix varia), occasionally hybridizes with spotted owls; our results indicated an upper bound for the frequency of barred owl mtDNA haplotypes in northern spotted owl populations of 3%.  相似文献   

11.
Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co‐exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis. Am J Phys Anthropol 155:136–148, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Black-tailed (Limosa limosa) and Hudsonian Godwits (L. haemastica) are sometimes described as a superspecies. The Black-tailed Godwit is further split into three subspecies on the basis of morphological differences (L. l. limosa, L. l. islandica and L. l. melanuroides). We studied variation in partial mtDNA control region sequences among Black-tailed and Hudsonian Godwits which showed 5% divergence. Black-tailed and Hudsonian Godwits were thus clearly differentiated and the separate species status for the two taxa is validated. All three subspecies described for the Black-tailed Godwit had unique haplotypes but the genetic distances were small (0.3–0.6%). Despite small genetic differences we could not detect any substantial gene flow between any of the subspecies as haplotypes were private to each subspecies. Thus, genetic variation within Black-tailed Godwits showed a clear geographic structure. We found a high proportion of rare private haplotypes in three fringe populations of the nominate subspecies of the Black-tailed Godwit (L. l. limosa) where godwits breed in low numbers, but no genetic variation at all in a sample from the Netherlands where godwits are abundant. This suggests that Dutch Godwits may have been affected by a founder effect.  相似文献   

13.
We sequenced 704 mitochondrial DNA (mtDNA) control-region nucleotides and genotyped 11 autosomal microsatellites (STR) in 617 European roe deer (Capreolus capreolus) samples, aiming to infer the species' phylogeographical structure. The mtDNA sequences were split in three distinct haplogroups, respectively, named: Clade West, sampled mainly in Iberia; Clade East, sampled mainly in Greece and in the Balkans; and Clade Central, which was widespread throughout Europe, including the eastern countries and Iberia, but not Greece. These clades might have originated in distinct Iberian and Balkanic refuges during the penultimate or the last glaciations. Clades East and West contributed little to the current postglacial mtDNA diversity in central Europe, which apparently was recolonized mainly by haplotypes belonging to Clade Central. A unique subclade within Clade Central grouped all the haplotypes sampled from populations of the Italian subspecies C. c. italicus. In contrast, haplotypes sampled in central and southern Spain joined both Clade Central and Clade West, suggesting that subspecies C. c. garganta has admixed origin. STR data support a genetic distinction of peripheral populations in north Iberia and southern Italy, and show the effects of anthropogenic disturbance in fragmented populations, which were recently reintroduced or restocked and not may be in mutation-drift equilibrium. Roe deer in central Europe are mainly admixed, while peripheral populations in north Portugal, the southern Italian Apennines and Greece represent the remains of refugial populations and should be managed accordingly.  相似文献   

14.
We used mitochondrial cytochrome  b sequences (up to 778 bp) and starch gel electrophoresis (45 loci) to examine the phylogeographical history of 39 populations of the California newt, Taricha torosa . Phylogenetic and population genetic methods were integrated to infer history at deep and shallow time depths. Using a molecular clock, the subspecies T. t. torosa and T. t. sierrae were estimated to have diverged 7–13 Mya. Within T. t. torosa, genetically differentiated groups were identified along coastal California, in southern California, and in the southern Sierra Nevada. The coastal group exhibited isolation by distance, but a lack of genetic variation north of present-day Monterey was indicative of a recent range expansion. In southern California, a disjunct population in central San Diego County was genetically diverged from coastal populations to the north (Nei's genetic distance of 0.113). However, mtDNA and protein data were geographically discordant regarding the boundary between the coastal and southern Californian groups, and a biogeographical scenario was developed to account for this discordance. The southern Sierran clade of T. t. torosa was weakly diverged from coastal populations for mtDNA sequence variation, yet was strongly differentiated for allozyme variation (Nei's genetic distance of 0.17–0.20). Populations of T. t. sierrae exhibited substantial population structure, and showed a steeper pattern of isolation by distance than did coastal populations of T. t. torosa . These results are interpreted in consideration of the known geomorphological history of California.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 213–239.  相似文献   

15.
Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci length polymorphisms were used to investigate genetic differentiation in spotted dolphins (Stenella attenuata) in the Eastern Tropical Pacific and to examine the intraspecific structure of the coastal subspecies (Stenella attenuata graffmani). One-hundred and thirty-five animals from several coastal areas and 90 offshore animals were sequenced for 455 bp of the mitochondrial control region, resulting in 112 mtDNA haplotypes. Phylogenetic analyses and the existence of shared haplotypes between the two subspecies suggest recent and/or current gene flow. Analyses using χ2, F ST (based on haplotype frequencies) and ΦST values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (randomized permutation values P<0.05) among four different coastal populations and between all but one of these and the offshore subspecies (overall F ST=0.0691). Ninety-one coastal animals from these four geographic populations and 50 offshore animals were genotyped for seven nuclear microsatellite loci. Analysis using F ST values (based on allelic frequencies) yielded statistically significant separation between most coastal populations and offshore animals, although no coastal populations were distinguished. These results argue for the existence of some genetic isolation between offshore and inshore populations and among some inshore populations, suggesting that these should be treated as separate units for management purposes.  相似文献   

16.
Studying the population history and demography of organisms with important ecological roles can aid understanding of evolutionary processes at the community level and inform conservation. We screened genetic variation (mtDNA and microsatellite) across the populations of the southern grey shrike (Lanius meridionalis koenigi) in the Canary Islands, where it is an endemic subspecies and an important secondary seed disperser. We show that the Canarian subspecies is polyphyletic with L. meridionalis elegans from North Africa and that shrikes have colonized the Canary Islands from North Africa multiple times. Substantial differences in genetic diversity exist across islands, which are most likely the product of a combination of historical colonization events and recent bottlenecks. The Eastern Canary Islands had the highest overall levels of genetic diversity and have probably been most recently and/or frequently colonized from Africa. Recent or ongoing bottlenecks were detected in three of the islands and are consistent with anecdotal evidence of population declines due to human disturbance. These findings are troubling given the shrike's key ecological role in the Canary Islands, and further research is needed to understand the community‐level consequences of declines in shrike populations. Finally, we found moderate genetic differentiation among populations, which largely reflected the shrike's bottleneck history; however, a significant pattern of isolation‐by‐distance indicated that some gene flow occurs between islands. This study is a useful first step toward understanding how secondary seed dispersal operates over broad spatial scales.  相似文献   

17.
Combining morphological, ecological and genetic analyses, we compared patterns of diversification within and among populations of the southern Siberian whitefish species Coregonus lavaretus pidschian (Gmelin) to illuminate their evolutionary history. Using sequencing data from 1,930 bp of NADH dehydrogenase subunit 1 (ND1) mitochondrial DNA regions, we documented phylogeographic relationships among populations and developed a phylogeny of mtDNA haplotypes. We found significant differences in the perforated lateral-line scale numbers within and between some populations. Clear differences in the number of gill rakers on the first branchial arch were only exhibited between populations of C. l. pidschian and Coregonus lavaretus pravdinellus Dulkeit. Concordance between different morphological groups based on two meristic traits and mtDNA patterns was also tested.  相似文献   

18.
The goitered gazelle, Gazella subgutturosa, is a medium-sized ungulate inhabiting arid and semi-arid regions in the Middle East and central Asia. The intraspecific classification of the species remains unclear. We analysed the genetic diversity in mitochondrial DNA control region (CR) sequences (976?bp) from 104 wild samples from the Xinjiang Uyghur Autonomous Region (XUAR) in north-west China, and reconstructed phylogeny with additional sequences from across the species’ range. We detected 58 haplotypes in XUAR populations, all but three of which were specific to single sampling sites. The phylogenetic analysis displayed two obvious clades of mtDNA haplotypes and the other haplotypes differed from the two clades. A median-joining network showed three groups of haplotypes were to a high extent concordant with the phylogenetic tree. The haplotype clustering was consistent with their geographic distribution. Nei’s net sequence divergences amongst the three groups ranged from 0.010 to 0.018 and indicated three subspecies, two of which inhabit XUAR. We detected strong differentiation between northern (NX) and southern (SX) XUAR populations overall (FST?=?0.4448, P?相似文献   

19.
We examined cytochrome b sequence variation in 251 ornate shrews (Sorex ornatus) from 20 localities distributed throughout their geographical range. Additionally, vagrant (S. vagrans) and montane (S. monticolus) shrews from four localities were used as outgroups. We found 24 haplotypes in ornate shrews from California (USA) and Baja California (Mexico) that differed by 1-31 substitutions in 392 bp of mitochondrial DNA (mtDNA) sequence. In a subset of individuals, we sequenced 699 bp of cytochrome b to better resolve the phylogeographic relationships of populations. The ornate shrew is phylogeographically structured into three haplotype clades representing southern, central and northern localities. Analysis of allozyme variation reveals a similar pattern of variation. Several other small California vertebrates have a similar tripartite pattern of genetic subdivision. We suggest that topographic barriers and expansion and contraction of wetland habitats in the central valley during Pleistocene glacial cycles account for these patterns of genetic variation. Remarkably, the northern ornate shrew clade is phylogenetically clustered with another species of shrew suggesting that it may be a unique lowland form of the vagrant shrew that evolved in parallel to their southern California counterparts.  相似文献   

20.
为了研究松鼠东北亚种(Sciurus vulgaris manchuricusThomas)不同种群的序列变异水平并进一步确定分类地位,我们分析了韩国5个地点和中国东北2个地点的松鼠标本的线粒体DNA控制区的全序列(1 058 bp)。39个韩国松鼠标本显示出21种单倍型,这些单倍型间的平均Tamura-Nei距离为1·0%; 24个中国松鼠标本显示21种单倍型,单倍型间的平均Tamura-Nei距离为1·4% (1 058 bp的全序列中发生变异的位点有119个,占11·2%)。韩国松鼠和中国松鼠间的平均距离为1·3%。并且韩国和中国松鼠的所有42个单倍型形成了一个单系分支,Fst值为0·04,表明在两个国家的松鼠间没有发生遗传分化。因此,序列分析的分子生物学的结果支持现行的分类,即来自韩国的朝鲜亚种(S·v·coreae)是中国北部地区松鼠东北亚种(S·v·manchuricus)的同物异名。这还需要进一步对北朝鲜和中国东北其它地区更多标本的分子和形态学分析来验证这一结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号