首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelial isoform of the Na(+)/H(+) exchanger, NHE3, associates with at least two related regulatory factors called NHERF1/EBP50 and NHERF2/TKA-1/E3KARP. These factors in addition interact with the cytoskeletal protein ezrin, which in turn binds to actin. The possible linkage of NHE3 with the cytoskeleton prompted us to test the effect of actin-modifying agents on NHE3 activity. Cytochalasins B and D and latrunculin B, which interfere with actin polymerization, induced a profound inhibition of NHE3 activity. The effect was isoform-specific inasmuch as the "housekeeping" exchanger NHE1 was virtually unaffected. Cytoskeletal disorganization was associated with a subcellular redistribution of NHE3, which accumulated at sites where actin aggregated, suggesting a physical interaction of exchangers with the cytoskeleton. An interaction was further suggested by the co-sedimentation of a detergent-insoluble fraction of NHE3 with the actin cytoskeleton. Inhibition of transport was not due to diminution in the number of transporters at the plasmalemma. Functional analyses of NHE1/NHE3 chimeras revealed that the cytoplasmic domain of NHE3 conferred sensitivity to cytochalasin B. Progressive carboxyl-terminal and internal deletions of the cytoplasmic region of NHE3 indicated that the region between residues 650 and 684 is critical for this response. This region overlaps with the domain reported to interact with NHERF and also contains a putative ezrin-binding site; hence, it likely plays a role in interactions with the cytoskeleton.  相似文献   

2.
The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII)beta has morphogenic functions in neurons not shared by the alpha isoform. CaMKIIbeta contains three exons (v1, v3, and v4) not present in the CaMKIIalpha gene, and two of these exons (v1 and v4) are subject to differential alternative splicing. We show here that CaMKIIbeta, but not alpha, mediated bundling of F-actin filaments in vitro. Most importantly, inclusion of exon v1 was required for CaMKIIbeta association with the F-actin cytoskeleton within cells. CaMKIIbetae, which is the dominant variant around birth and lacks exon v1 sequences, failed to associate with F-actin. By contrast, CaMKIIbeta', which instead lacks exon v4, associated with F-actin as full-length CaMKIIbeta. Previous studies with CaMKIIbeta mutants have indicated a role of nonstimulated kinase activity in enhancing dendritic arborization. Here, we show that F-actin-targeted CaMKIIbeta, but not alpha, was able to phosphorylate actin in vitro even by nonstimulated basal activity in absence of Ca(2+)/CaM. In rat pancreatic islets and in skeletal muscle, the actin-associated CaMKIIbeta' and betaM were the predominant variants, respectively. Thus, cytoskeletal targeting may mediate functions of CaMKIIbeta variants also outside the nervous system.  相似文献   

3.
Integrins play a major role in cell adhesion and migration. Previous work reported that a cleaved form of integrin alpha6 (alpha6p) was detected in invasive human prostate cancer tissue, absent in normal prostate tissue and was produced by urokinase-type Plasminogen Activator (uPA) in a plasmin-independent manner. Using site-directed mutagenesis we identified amino acid residues R594 and R595, located in the "stalk" region of integrin alpha6, as essential for cleavage. The cleavage site is located on the extracellular region of the protein between the beta-barrel domain and the thigh domain. Prostate cancer cells (PC3N) were stably transfected to overexpress the cleavable, wild-type (PC3N-alpha6-WT) or the non-cleavable form of integrin alpha6 (PC3N-alpha6-RR). The number of cells invading laminin 111- and laminin 332-coated filters by PC3N-alpha6-WT cells increased by threefold as compared to PC3N-alpha6-RR cells. Plasminogen activator inhibitor-1 (PAI-1) reduced the invasion of PC3N-alpha6-WT cells by approximately 42% through laminin 332-coated filters and plasmin inhibitor aprotinin had no significant effect. Linear cell migration increased production of integrin alpha6p in the PC3N-alpha6-WT cells and not in the PC3N-alpha6-RR cells and 32% of the PC3N-alpha6-WT cells migrated on laminin 111 in the linear migration assay as compared to the 5% PC3N-alpha6-RR cells. These data taken together suggest that the uPA-mediated cell surface cleavage of the alpha6 integrin extracellular domain is involved in tumor cell invasion and migration on laminin.  相似文献   

4.
5.
6.
E-cadherin is a central component of the adherens junction in epithelial cells and continuously undergoes endocytosis via clathrin-coated vesicles and/or caveolae depending on the cell type. In this study, we examined the role of SMAP1, a clathrin-interacting GTPase-activating protein (GAP) for the ADP-ribosylation factor 6 (Arf6) GTPase, in E-cadherin endocytosis. Mardin-Darby canine kidney (MDCK) epithelial cells were used as a model, and SMAP1 localized in the cytoplasm and along the adherens junction where E-cadherin was present. Next, activity of SMAP1 was compared with that of other Arf6GAPs (and/or an effector of Arf6-GTP), namely GIT1 and AMAP2/DDEF2. Overexpression of SMAP1 but not GIT1 nor AMAP2/DDEF2 strongly inhibited basal, as well as phorbolester-induced, internalization of E-cadherin. Notably, AMAP2/DDEF2 rather enhanced the caveolae-mediated incorporation of a membrane protein other than E-cadherin. Thus, in MDCK cells, E-cadherin appeared to be endocytosed solely through SMAP1-regulated clathrin-coated vesicles. Furthermore, MDCK cells overexpressing SMAP1 showed a reduced degree of cell migration compared to untransfected cells, as assessed by wound healing and Transwell assays, and this reduction in migration appeared to be due to the accumulation of E-cadherin at the adherens junction in cells overexpressing SMAP1. Collectively, SMAP1 likely represents a key Arf6GAP in clathrin dependent endocytosis of E-cadherin in MDCK cells. This activity of SMAP1 in E-cadherin turnover may be involved in epithelial organization and/or epithelial-mesenchymal transition.  相似文献   

7.
The α5β1 integrin heterodimer regulates many processes that contribute to embryonic development and angiogenesis, in both physiological and pathological contexts. As one of the major adhesion complexes on endothelial cells, it plays a vital role in adhesion and migration along the extracellular matrix. We recently showed that angiogenesis is modulated by syntaxin 6, a Golgi- and endosome-localized t-SNARE, and that it does so by regulating the post-Golgi trafficking of VEGFR2. Here we show that syntaxin 6 is also required for α5β1 integrin-mediated adhesion of endothelial cells to, and migration along, fibronectin. We demonstrate that syntaxin 6 and α5β1 integrin colocalize in EEA1-containing early endosomes, and that functional inhibition of syntaxin 6 leads to misrouting of β1 integrin to the degradation pathway (late endosomes and lysosomes) rather transport along recycling pathway from early endosomes; an increase in the pool of ubiquitinylated α5 integrin and its lysosome-dependent degradation; reduced cell spreading on fibronectin; decreased Rac1 activation; and altered Rac1 localization. Collectively, our data show that functional syntaxin 6 is required for the regulation of α5β1-mediated endothelial cell movement on fibronectin. These syntaxin 6-regulated membrane trafficking events control outside-in signaling via haptotactic and chemotactic mechanisms.  相似文献   

8.
How an organ develops its characteristic shape is a major issue. This is particularly critical for the eye lens as its function depends on having appropriately ordered three-dimensional cellular architecture. Recent in vitro studies indicate that Wnt signaling plays key roles in regulating morphological events in FGF-induced fiber cell differentiation in the mammalian lens. To further investigate this the Wnt signaling antagonist, secreted frizzled-related protein 2 (Sfrp2), was overexpressed in lens fiber cells of transgenic mice. In these mice fiber cell elongation was attenuated and individual fibers exhibited irregular shapes and consequently did not align or pack regularly; microtubules, microfilaments and intermediate filaments were clearly disordered in these fibers. Furthermore, a striking feature of transgenic lenses was that fibers did not develop the convex curvature typically seen in normal lenses. This appears to be related to a lack of protrusive processes that are required for directed migratory activity at their apical and basal tips as well as for the formation of interlocking processes along their lateral margins. Components of the Wnt/Planar Cell Polarity (PCP) pathway were downregulated or inhibited. Taken together this supports a role for Wnt/PCP signaling in orchestrating the complex organization and dynamics of the fiber cell cytoskeleton.  相似文献   

9.
10.
alpha(6) Integrin is the main receptor of human papillomavirus type 16 VLP   总被引:4,自引:0,他引:4  
The present study was performed to determine the specific receptor of type HPV-16 using recombinant human papillomavirus-like particle (HPV-16 L1-VLP). The expression levels of alpha(6), beta(1), and beta(4) integrins were determined and compared with the amount of HPV-VLP binding in ten cell lines by flow cytometry. Our results show that the amount of VLP binding and the expression level of alpha(6) integrin are correlated, which was confirmed by an inhibition experiment using antibodies and by immunocytochemistry. Both the expression level of alpha(6) integrin and the amount of HPV-VLP binding were high in cervical cancer cell lines, as the type HPV-16 is the main cause of cervical cancer. The degree of binding of HPV-VLP matched the alpha(6) integrin expression level in cell lines but was not correlated with beta(1) and beta(4) levels, which suggests that alpha(6) integrin is the main receptor of HPV type 16.  相似文献   

11.
Isotype switching by murine B cells follows a pattern whereby the proportion of cells undergoing switching increases with division number and is regulated by cytokines. Here we explored whether human B cells behaved in a similar manner. The effect of IL-4, IL-10, and IL-13, alone or in combination, on Ig isotype switching by highly purified naive human CD40 ligand (CD40L)-activated B cells was measured against division number over various harvest times. Switching to IgG was induced by IL-4 and, to a lesser extent, IL-13 and IL-10. The combination of IL-10 with IL-4, but not IL-13, induced a higher percentage of cells to undergo switching. Isotype switching to IgG by human CD40L-activated naive B cells was found to be linked to the division history of the cells: IgG(+) cells appeared in cultures of B cells stimulated with CD40L and IL-4 after approximately the third cell division, with the majority expressing IgG1, thus revealing a predictable pattern of IgG isotype switching. These results reveal a useful quantitative framework for monitoring the effects of cytokines on proliferation and isotype switching that should prove valuable for screening Ig immunodeficiencies and polymorphisms in the population for a better understanding of the regulation of human humoral immune responses.  相似文献   

12.
The glycan determinant CD15 (also known as Lewis x, or Le(x)) is a distinguishing marker for human myeloid cells and mediates neutrophil adhesion to dendritic cells. Despite broad interest in this structure, the mechanisms underlying CD15 expression remain relatively uncharacterized. Accordingly, we investigated the molecular basis of increasing CD15 expression associated with human myeloid cell differentiation. Flow cytometric analysis of differentiating cells together with biochemical studies using inhibitors of glycan synthesis and of sialidases showed that increased CD15 expression is not due to de novo biosynthesis of CD15, but results predominantly from induction of alpha(2-3)-sialidase activity, which yields CD15 from cell-surface sialyl-CD15 (also known as sialyl-Lewis x, sLe(x) or CD15s). This differentiation-associated conversion of surface CD15s to CD15 occurs mainly on glycoproteins. Until now, modulation of post-translational glycan modifications has been attributed solely to dynamic variations in glycosyltransferase expression. Our results unveil a new paradigm by demonstrating a critical role for post-Golgi membrane glycosidase activity in the 'biosynthesis' of a key glycan determinant.  相似文献   

13.
CD14 is a myeloid differentiation Ag expressed primarily on peripheral blood monocytes and macrophages. Although its function is unknown, the CD14 gene maps to a region encoding several myeloid growth factors and receptors. Analysis of the CD14 protein sequence deduced from the cDNA shows that although the CD14 protein contains a characteristic leader peptide, it lacks a characteristic transmembrane region, suggesting that CD14 may be anchored to the membrane via glycosylphosphatidylinositol (PI). Treatment of monocytes as well as a CD14-expressing neuroglioma cell line with PI-phospholipase C removed CD14 from the cell surface. Furthermore, monocytes from a patient with paroxysmal nocturnal hemoglobinuria, a disease characterized by lack of expression of other PI-linked proteins, failed to express CD14. Interestingly, the CD14-expressing neuroglioma cell line, which had been transfected with a single CD14 cDNA, released a soluble form of CD14 into the supernatant. Soluble forms of CD14 have previously been observed in serum of normal individuals and in culture supernatants of CD14+ cells. Biosynthetic experiments reveal that this soluble form of CD14 (48 kDa), which is smaller than the form released from the membrane by PI-phospholipase C (53 kDa), does not contain ethanolamine, the first constitutent of the PI-anchoring system. These studies demonstrate that CD14 is a member of the family of PI-anchored proteins and suggest that soluble forms of CD14 represent molecules that completely lack the PI-anchoring system.  相似文献   

14.
15.
16.
Adult human mesenchymal stem cells are primary, multipotent cells capable of differentiating to osteocytic, chondrocytic, and adipocytic lineages when stimulated under appropriate conditions. To characterize the molecular mechanisms that regulate osteogenic differentiation, we examined the contribution of mitogen-activated protein kinase family members, ERK, JNK, and p38. Treatment of these stem cells with osteogenic supplements resulted in a sustained phase of ERK activation from day 7 to day 11 that coincided with differentiation, before decreasing to basal levels. Activation of JNK occurred much later (day 13 to day 17) in the osteogenic differentiation process. This JNK activation was associated with extracellular matrix synthesis and increased calcium deposition, the two hallmarks of bone formation. Inhibition of ERK activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked the osteogenic differentiation in a dose-dependent manner, as did transfection with a dominant negative form of MAP kinase kinase (MEK-1). Significantly, the blockage of osteogenic differentiation resulted in the adipogenic differentiation of the stem cells and the expression of adipose-specific mRNAs peroxisome proliferator-activated receptor gamma2, aP2, and lipoprotein lipase. These observations provide a potential mechanism involving MAP kinase activation in osteogenic differentiation of adult stem cells and suggest that commitment of hMSCs into osteogenic or adipogenic lineages is governed by activation or inhibition of ERK, respectively.  相似文献   

17.
The epidermis comprises multiple layers of specialized epithelial cells called keratinocytes. As cells are lost from the outermost epidermal layers, they are replaced through terminal differentiation, in which keratinocytes of the basal layer cease proliferating, migrate upwards, and eventually reach the outermost cornified layers. Normal homeostasis of the epidermis requires that the balance between proliferation and differentiation be tightly regulated. The GTP binding protein RhoA plays a fundamental role in the regulation of the actin cytoskeleton and in the adhesion events that are critically important to normal tissue homeostasis. Two central mediators of the signals from RhoA are the ROCK serine/threonine kinases ROCK-I and ROCK-II. We have analyzed ROCK's role in the regulation of epidermal keratinocyte function by using a pharmacological inhibitor and expressing conditionally active or inactive forms of ROCK-II in primary human keratinocytes. We report that blocking ROCK function results in inhibition of keratinocyte terminal differentiation and an increase in cell proliferation. In contrast, activation of ROCK-II in keratinocytes results in cell cycle arrest and an increase in the expression of a number of genes associated with terminal differentiation. Thus, these results indicate that ROCK plays a critical role in regulating the balance between proliferation and differentiation in human keratinocytes.  相似文献   

18.
Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.  相似文献   

19.
To elucidate the regulatory mechanisms underlying lens development, we searched for members of the large Maf family, which are expressed in the mouse lens, and found three, c-Maf, MafB, and Nrl. Of these, the earliest factor expressed in the lens was c-Maf. The expression of c-Maf was most prominent in lens fiber cells and persisted throughout lens development. To examine the functional contribution of c-Maf to lens development, we isolated genomic clones encompassing the murine c-maf gene and carried out its targeted disruption. Insertion of the beta-galactosidase (lacZ) gene into the c-maf locus allowed visualization of c-Maf accumulation in heterozygous mutant mice by staining for LacZ activity. Homozygous mutant embryos and newborns lacked normal lenses. Histological examination of these mice revealed defective differentiation of lens fiber cells. The expression of crystallin genes was severely impaired in the c-maf-null mutant mouse lens. These results demonstrate that c-Maf is an indispensable regulator of lens differentiation during murine development.  相似文献   

20.
Tumor endothelial marker 8 (TEM8) is an integrin-like cell surface protein upregulated on tumor blood vessels and a potential vascular target for cancer therapy. Here, we found that the ability of an anti-TEM8 antibody, clone SB5, to recognize the extracellular domain of TEM8 on the cell surface depends on other host-cell factors. By taking advantage of SB5's ability to distinguish different forms of cell surface TEM8, we identified alpha-smooth muscle actin and transgelin, an actin binding protein, as intracellular factors able to alter TEM8 cell surface structure. Overexpression of either of these proteins in cells converted TEM8 from an SB5-exposed to an SB5-masked form and protected cells from SB5-saporin immunotoxins. Because the predominant form of TEM8 on the cell surface is not recognized by SB5, we also developed a new monoclonal antibody, called AF334, which is able to recognize both the SB5-exposed and the SB5-masked forms of TEM8. AF334-saporin selectively killed TEM8-positive cells independent of TEM8 cell surface structure. These studies reveal that TEM8 exists in different forms at the cell surface, a structure dependent on interactions with components of the actin cytoskeleton, and should aid in the rational design of the most effective diagnostic and therapeutic anti-TEM8 monoclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号