首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copper homeostasis in mammals is maintained by the balance of dietary intake and copper excretion via the bile. Sheep have a variant copper phenotype and do not efficiently excrete copper by this mechanism, often resulting in excessive copper accumulation in the liver. The Wilson disease protein (ATP7B) is a copper transporting P-type ATPase that is responsible for the efflux of hepatic copper into the bile. To investigate the role of ATP7B in the sheep copper accumulation phenotype, the cDNA encoding the ovine homologue of ATP7B was isolated and sequenced and the gene was localised by fluorescence in situ hybridisation to chromosome 10. The 6.3 kb cDNA encoded a predicted protein of 1444 amino acids which included all of the functional domains characteristic of copper transporting P-type ATPases. ATP7B mRNA was expressed primarily in the liver with lower levels present in the intestine, hypothalamus and ovary. A splice variant of ATP7B mRNA, which was expressed in the liver and comprised approximately 10% of the total ATP7B mRNA pool, also was isolated. The results suggest that ATP7B is produced in the sheep and that the tendency to accumulate copper in the liver is not due to a gross alteration in the structure or expression of ATP7B.  相似文献   

2.
An important step in copper homeostasis is delivery of copper to a specific P-type ATPase in the Golgi apparatus (Ccc2 in yeast, ATP7A and ATP7B in humans) by a small copper chaperone protein (Atx1 in yeast, ATOX1 in humans). Atx1 and ATOX1 both contain an MXCXXC motif that is also present in Ccc2 (two motifs) and ATP7A/B (six motifs). Protein-protein interactions probably require coordination of one Cu(I) by cysteines from both MXCXXC motifs. We applied yeast two-hybrid analysis to screen systematically all possible interactions between MXCXXC-containing domains in these proteins. We demonstrate that ATOX1 and Atx1 preferentially interact with domains 2 and 4 of ATP7B and that Atx1 interacts with both Ccc2 domains. All combinations show a remarkable bell-shaped dependency on copper concentration that is maximal just below normal copper levels. Our results suggest that yeast two-hybrid analysis can be used to study the intracellular copper status of a cell.  相似文献   

3.
P J Lockhart  J F Mercer 《Gene》1999,236(2):251-257
The cDNA encoding sheep ceruloplasmin (sCP) was isolated from a sheep liver cDNA library. The cDNA contig was 3530 nucleotides in length and encoded a protein of 1048 amino acids. The deduced amino acid sequence showed a high degree of conservation (87%) when compared to the human ceruloplasmin (hCP) sequence. Northern blot analysis of sheep tissue revealed that the sheep ceruloplasmin gene (sCP) was expressed primarily in the liver, but low levels of mRNA were detected in the hypothalamus, spleen and uterus. No sCP mRNA was detected in the cortex, heart, intestine or kidney. Expression was not significantly affected by hepatic copper content. Northern blot analysis of sheep liver during development demonstrated little sCP expression during fetal life, but significant levels of mRNA were observed after birth. Significantly, the developmental expression pattern of sCP was closely correlated with that of the sheep Wilson disease gene (sATP7B), suggesting that the expression of the two genes may be coordinated to ensure that copper is supplied to apoceruloplasmin. Overall, the structure and expression of sCP appeared similar to other mammals, suggesting that abnormalities in CP were not responsible for the unusual sheep copper phenotype.  相似文献   

4.
An ATX1 homologue of 503 bp length was cloned from a rat cDNA library, and the deduced protein from the cDNA was found to contain 68 amino acids with a predicted molecular mass of 7.2 kDa. The rat ATX1 homologue protein (Rah1p), which shows 35%, 38%, and 89% identities with Atx1p, CUC-1, and HAH1, respectively, conserves both the MTCXXC copper-binding site in the N terminus and the KTGK lysine-rich region in the C terminus. In Northern blot analysis, rah1 mRNA was found to be expressed at high levels in the liver, small intestine, and testis. Expression of rah1 cDNA complemented a null atx1 mutant strain in yeast. Thus, Rah1p was concluded to be a functional copper chaperone.  相似文献   

5.
The P-type ATPase affected in Wilson disease, ATP7B, is a key liver protein required to regulate and maintain copper homeostasis. When hepatocytes are exposed to elevated copper levels, ATP7B traffics from the trans-Golgi network toward the biliary canalicular membrane to excrete excess copper into bile. The N-terminal region of ATP7B contains six metal-binding sites (MBS), each with the copper-binding motif MXCXXC. These sites are required for the activity and copper-regulated intracellular redistribution of ATP7B. Two proteins are known to interact with the ATP7B N-terminal region: the copper chaperone ATOX1 that delivers copper to ATP7B, and COMMD1 (MURR1) that is potentially involved in vesicular copper sequestration. To identify additional proteins that interact with ATP7B and hence are involved in copper homeostasis, a yeast two-hybrid approach was employed to screen a human liver cDNA library. The dynactin subunit p62 (dynactin 4; DCTN4) was identified as an interacting partner, and this interaction was confirmed by co-immunoprecipitation from mammalian cells. The dynactin complex binds cargo, such as vesicles and organelles, to cytoplasmic dynein for retrograde microtubule-mediated trafficking and could feasibly be involved in the copper-regulated trafficking of ATP7B. The ATP7B/p62 interaction required copper, the metal-binding CXXC motifs, and the region between MBS 4 and MBS 6 of ATP7B. The p62 subunit did not interact with the related copper ATPase, ATP7A. We propose that the ATP7B interaction with p62 is a key component of the copper-induced trafficking pathway that delivers ATP7B to subapical vesicles of hepatocytes for the removal of excess copper into bile.  相似文献   

6.
We explored the role of known copper transporters and chaperones in delivering copper to peptidylglycine-alpha-hydroxylating monooxygenase (PHM), a copper-dependent enzyme that functions in the secretory pathway lumen. We examined the roles of yeast Ccc2, a P-type ATPase related to human ATP7A (Menkes disease protein) and ATP7B (Wilson disease protein), as well as yeast Atx1, a cytosolic copper chaperone. We expressed soluble PHMcc (catalytic core) in yeast using the yeast pre-pro-alpha-mating factor leader region to target the enzyme to the secretory pathway. Although the yeast genome encodes no PHM-like enzyme, PHMcc expressed in yeast is at least as active as PHMcc produced by mammalian cells. PHMcc partially co-migrated with a Golgi marker during subcellular fractionation and partially co-localized with Ccc2 based on immunofluorescence. To determine whether production of active PHM was dependent on copper trafficking pathways involving the CCC2 or ATX1 genes, we expressed PHMcc in wild-type, ccc2, and atx1 mutant yeast. Although ccc2 and atx1 mutant yeast produce normal levels of PHMcc protein, it lacks catalytic activity. Addition of exogenous copper yields fully active PHMcc. Similarly, production of active PHM in mouse fibroblasts is impaired in the presence of a mutant ATP7A gene. Although delivery of copper to lumenal cuproproteins like PAM involves ATP7A, lumenal chaperones may not be required.  相似文献   

7.
Copper is an essential trace mineral required for growth and development. Copper homeostasis within the cell is mediated by the expression of the Cu transporter protein (CTR1), ATPase7A (ATP7A), ATPase7B (ATP7B), Cox17, and Cu chaperone for Cu–Zn superoxide dismutase (CCS) which helps to regulate Cu uptake, export, and intracellular compartmentalization in non-ruminants. Copper also serves as a cofactor of antioxidant, superoxide dismutase1 (SOD1). Liver tissue from eighteen Holstein bull calves (average BW 201?±?58.5 kg, 7.3?±?1.9 months) from a previous experiment were utilized to characterize and identify hepatic mRNA related to Cu metabolism and homeostasis in cattle. Hepatic Cu concentration was determined via flame atomic absorption, and total RNA was extracted using TRI reagent and purified using RNeasy. Hepatic Cu concentrations ranged from 86 to 801 mg of Cu/kg DM. Real-time polymerase chain reaction analysis revealed that CTR1, ATP7A, and ATP7B mRNA expressions were negatively correlated with hepatic Cu concentration, while CCS (P?=?0.0887) and SOD1 had a tendency (P?=?0.0733) to be negatively correlated to hepatic Cu concentration. These data indicate that higher than normal hepatic Cu concentration downregulates gene expression of CTR1, ATP7A, ATP7B, and Cox17, which are involved in bovine liver copper homeostasis.  相似文献   

8.
The Wilson disease (WD) protein (ATP7B) is a copper-transporting P-type ATPase that is responsible for the efflux of hepatic copper into the bile, a process that is essential for copper homeostasis in mammals. Compared with other mammals, sheep have a variant copper phenotype and do not efficiently excrete copper via the bile, often resulting in excessive copper accumulation in the liver. To investigate the function of sheep ATP7B and its potential role in the copper-accumulation phenotype, cDNAs encoding the two forms of ovine ATP7B were transfected into immortalised fibroblast cell lines derived from a Menkes disease patient and a normal control. Both forms of ATP7B were able to correct the copper-retention phenotype of the Menkes cell line, demonstrating each to be functional copper-transporting molecules and suggesting that the accumulation of copper in the sheep liver is not due to a defect in the copper transport function of either form of sATP7B.  相似文献   

9.
Nanji MS  Cox DW 《Genomics》1999,62(1):108-112
Copper toxicosis, resulting in liver disease, commonly occurs in Bedlington terriers. This recessively inherited disorder, similar in many respects to Wilson disease, is of particular interest because the canine Atp7b gene, homologous to ATP7B defective in Wilson disease, is not responsible for canine copper toxicosis as has been expected. Atox1, a copper chaperone delivering copper to Atp7b, therefore became a potential candidate. We cloned canine Atox1, which shows conserved motifs of the copper-binding domain (MTCXXC) and of the lysine-rich region (KTGK), and showed 88, 80, and 41% amino acid sequence identity with the orthologous mouse, human, and yeast proteins. No gross deletions of Atox1 could be identified in the affected Bedlington terriers by Southern blot analysis of genomic DNA. The canine Atox1 gene spans about 4 kb, with a 204-bp open reading frame cDNA contained within two exons. Sequence analysis of the coding regions, including intron/exon boundaries, showed no mutations in Atox1 from genomic DNA of an affected dog. We have also identified an apparently nontranscribed canine Atox1 pseudogene, with 12 sequence changes and no intron. Mapping of Atox1 and a marker closely linked to the canine copper toxicosis locus indicated lack of synteny. Atox1 is therefore excluded as a candidate gene for canine copper toxicosis, indicating that some other unidentified gene must be responsible for this copper storage disease in dogs and also suggesting the possibility of a similar gene responsible for a copper storage disease in humans.  相似文献   

10.
Monospecific antibody against purified rat liver cholesterol 7 alpha-hydroxylase cytochrome P-450 was used to screen a lambda gt11 cDNA library constructed from immuno-enriched polysomal RNA of cholestyramine-treated female rat liver. Two types of cDNA clones differing in the length of the 3'-untranslated region were identified, and DNA sequences were determined. The full length clone contains 3561 base pairs plus a long poly(A) tail. The amino acid sequence deduced from the open reading frame revealed a unique P-450 protein containing 503 amino acid residues which belonged to a new gene family designated family VII or CYP7. Southern blot hybridization experiments indicated that the minimal size of P-450 VII gene was 11 kilobase pairs (kb), and there was probably only one gene in this new family. Northern blot hybridization using specific cDNA probes revealed at least two major mRNA species of about 4.0 kb and 2.1 kb, respectively. These two mRNA species may be derived from the use of different polyadenylation signals and reverse-transcribed to two types of cDNA clones. Cholesterol 7 alpha-hydroxylase mRNAs were induced 2- to 3-fold in rat liver by cholestyramine treatment. The mRNA level was rapidly reduced upon the removal of the inducer. Similarly, cholesterol feeding induced enzyme activity, protein, and mRNA levels in the rat by 2-fold, suggesting that cholesterol is an important regulator of cholesterol 7 alpha-hydroxylase in the liver. On the other hand, dexamethasone and pregnenolone-16 alpha-carbonitrile drastically reduced the activity, protein, and mRNA levels. These experiments suggest that the induction of cholesterol 7 alpha-hydroxylase activity by cholestyramine or cholesterol and inhibition of cholesterol 7 alpha-hydroxylase activity by bile acid feedback are results of the rapid turnover of cholesterol 7 alpha-hydroxylase enzyme and mRNA levels.  相似文献   

11.
A cDNA encoding human nucleophosmin (protein B23) was obtained by screening a human placental cDNA library in lambda gtll first with monoclonal antibody to rat nucleophosmin and then with confirmed partial cDNA of human nucleophosmin as probes. The cDNA had 1311 bp with a coding sequence encoding a protein of 294 amino acids. The identity of the cDNA was confirmed by the presence of encoded amino acid sequences identical with those determined by sequencing pure rat nucleophosmin (a total of 138 amino acids). The most striking feature of the sequence is an acidic cluster located in the middle of the molecule. The cluster consists of 26 Asp/Glu and 1 Phe and Ala. Comparison of human nucleophosmin and Xenopus nucleolar protein NO38 shows 64.3% sequence identity. The N-terminal 130 amino acids of human nucleophosmin also bear 50% identity with that of Xenopus nucleoplasmin. Northern blot analysis of rat liver total RNA with a partial nucleophosmin cDNA as probe demonstrated a homogeneous mRNA band of about 1.6 kb. Similar observations were made in hypertrophic rat liver and Novikoff hepatoma. However, the quantity of nucleophosmin mRNA is 50- and 5-fold higher in Novikoff hepatoma and hypertrophic rat liver, respectively, when compared with normal rat liver. Dot blot analysis also showed a nucleophosmin mRNA ratio of 64:5:1 in the three types of rat liver. When the protein levels were compared with Western blot immunoassays, Novikoff hepatoma showed 20 times more nucleophosmin, while only about 5 times more nucleophosmin was observed in hypertrophic rat liver than in unstimulated normal liver.  相似文献   

12.
13.
An oligonucleotide probe specific for the amino acid sequence at the biotin site in pyruvate carboxylase was used to screen a human liver cDNA library. Nine cDNA clones were isolated and three proved to be pyruvate carboxylase clones based on nucleotide sequencing and Northern blotting. The biotin site amino acid sequence of human pyruvate carboxylase agreed perfectly with that of the sheep enzyme in 14 consecutive positions. The highly conserved amino acid sequence, Ala-Met-Lys-Met, found at the biotin site in most biotin-containing carboxylases was also present in human pyruvate carboxylase. The termination codon was located 35 residues 3' to the lysine residue at which the biotin is attached. Therefore, the biotin cofactor is covalently linked near the carboxyl-terminal end of the carboxylase protein. These data are consistent with that observed for other biotin-containing carboxylases and strongly suggests that the genes encoding the biotin-containing carboxylases may have evolved from a common ancestral gene. Northern blotting of mRNA isolated from human, baboon, and rat liver demonstrated that the pyruvate carboxylase mRNA was 4.2 kilobase pairs in length in all species examined. Southern blot analysis of genomic DNA isolated from human-Chinese hamster somatic cell hybrids localized the pyruvate carboxylase gene on the long arm of human chromosome 11. The human cDNA was also used to quantitate pyruvate carboxylase mRNA levels in a differentiating mouse preadipocyte cell line. These data demonstrated that pyruvate carboxylase mRNA content increased 23-fold in 7 days after the onset of differentiation.  相似文献   

14.
Liu Y  Pilankatta R  Hatori Y  Lewis D  Inesi G 《Biochemistry》2010,49(46):10006-10012
ATP7A and ATP7B are P-type ATPases required for copper homeostasis and involved in the etiology of Menkes and Wilson diseases. We used heterologous expression of ATP7A or ATP7B in COS-1 cells infected with adenovirus vectors to characterize differential features pertinent to each protein expressed in the same mammalian cell type, rather than to extrinsic factors related to different cells sustaining expression. Electrophoretic analysis of the expressed protein, before and after purification, prior or subsequent to treatment with endoglycosidase, and evidenced by protein or glycoprotein staining as well as Western blotting, indicates that the ATP7A protein is glycosylated while ATP7B is not. This is consistent with the prevalence of glycosylation motifs in the ATP7A sequence, and not in ATP7B. ATP7A and ATP7B undergo copper-dependent phosphorylation by utilization of ATP, forming equal levels of an "alkali labile" phosphoenzyme intermediate that undergoes similar catalytic (P-type ATPase) turnover in both enzymes. In addition, incubation with ATP yields an "alkali stable" phosphoprotein fraction, attributed to phosphorylation of serines. Alkali stable phosphorylation occurs at lower levels in ATP7A, consistent with a different distribution of serines in the amino acid sequence. Immunostaining of COS-1 cells sustaining heterologous expression shows initial association of both ATP7A and ATP7B with Golgi and the trans-Golgi network. However, in the presence of added copper, ATP7A undergoes prevalent association with the plasma membrane while ATP7B exhibits intense trafficking with cytosolic vesicles. Glycosylation of ATP7A and phosphorylation of ATP7B apparently contribute to their different trafficking and membrane association when expressed in the same cell type.  相似文献   

15.
16.
A cDNA clone encoding transglutaminase was isolated from a bovine-endothelial-cell cDNA library using oligonucleotide probes designed based on partial amino acid sequences of the purified protein. Sequencing of the cDNA insert revealed an open reading frame of 2061 bp coding for a protein of 687 amino acids. The sequence of bovine endothelial-cell transglutaminase was 88, 82, 80, 37, 37 and 37% identical with that of human endothelial, rat macrophage, guinea-pig liver, human and rat keratinocyte transglutaminases, and the human blood-coagulation factor XIIIa subunit, respectively. The cDNA clone was hybridized to a single mRNA species of 3.9 kb in the liver, lung, spleen and heart but not hybridized to RNA from the brain. Northern-blot analysis of mRNA from retinoid-treated cultured vascular endothelial cells revealed that retinoids were able to induce a large increase in the transglutaminase mRNA levels.  相似文献   

17.
In Wilson’s disease (WND), biallelic ATP7B gene mutation is responsible for pathological copper accumulation in the liver, brain and other organs. It has been proposed that copper transporter 1 (CTR1) and the divalent metal transporter 1 (DMT1) translocate copper across the human intestinal epithelium, while Cu-ATPases: ATP7A and ATP7B serve as copper efflux pumps. In this study, we investigated the expression of CTR1, DMT1 and ATP7A in the intestines of both WND patients and healthy controls to examine whether any adaptive mechanisms to systemic copper overload function in the enterocytes. Duodenal biopsy samples were taken from 108 patients with Wilson’s disease and from 90 controls. CTR1, DMT1, ATP7A and ATP7B expression was assessed by polymerase chain reaction and Western blot. Duodenal CTR1 mRNA and protein expression was decreased in WND patients in comparison to control subjects, while ATP7A mRNA and protein production was increased. The variable expression of copper transporters may serve as a defense mechanism against systemic copper overload resulting from functional impairment of ATP7B.  相似文献   

18.
Transcuprein is a high-affinity copper carrier in the plasma that is involved in the initial distribution of copper entering the blood from the digestive tract. To identify and obtain cDNA for this protein, it was purified from rat plasma by size exclusion and copper-chelate affinity chromatography, and amino acid sequences were obtained. These revealed a 190-kDa glycosylated protein identified as the macroglobulin alpha(1)-inhibitor III, the main macroglobulin of rodent blood plasma. Albumin (65 kDa) copurified in variable amounts and was concluded to be a contaminant (although it can transiently bind the macroglobulin). The main macroglobulin in human blood plasma (alpha(2)-macroglobulin), which is homologous to alpha(1)-inhibitor III, also bound copper tightly. Expression of alpha(1)I3 (transcuprein) mRNA by the liver was examined in rats with and without copper deficiency, using quantitative polymerase chain reaction methodology and Northern blot analysis. Protein expression was examined by Western blotting. Deficient rats with 40% less ceruloplasmin oxidase activity and liver copper concentrations expressed about twice as much alpha(1)I3 mRNA, but circulating levels of transcuprein did not differ. Iron deficiency, which increased liver copper concentrations by threefold, reduced transcuprein mRNA expression and circulating levels of transcuprein relative to what occurred in rats with normal or excess iron. We conclude that transcupreins are specific macroglobulins that not only carry zinc but also carry transport copper in the blood, and that their expression can be modulated by copper and iron availability.  相似文献   

19.
Human Cu-ATPases ATP7A and ATP7B maintain copper homeostasis through regulated trafficking between intracellular compartments. Inactivation of these transporters causes Menkes disease and Wilson disease, respectively. In Menkes disease, copper accumulates in kidneys and causes tubular damage, indicating that the renal ATP7B does not compensate for the loss of ATP7A function. We show that this is likely due to a kidney-specific regulation of ATP7B. Unlike ATP7A (or hepatic ATP7B) which traffics from the TGN to export copper, renal ATP7B does not traffic and therefore is unlikely to mediate copper export. The lack of ATP7B trafficking is not on account of the loss of a kinase-mediated phosphorylation or simultaneous presence of ATP7A in renal cells. Rather, the renal ATP7B appears 2–3 kDa smaller than hepatic ATP7B. Recombinant ATP7B expressed in renal cells is similar to hepatic protein in size and trafficking. The analysis of ATP7B mRNA revealed a complex behavior of exon 1 upon amplification, suggesting that it could be inefficiently translated. Recombinant ATP7B lacking exon 1 traffics differently in renal and hepatic cells, but does not fully recapitulate the endogenous phenotype. We discuss factors that may contribute to cell-specific behavior of ATP7B and propose a role for renal ATP7B in intracellular copper storage.  相似文献   

20.
ATOX1 is a cytoplasmic copper chaperone that interacts with the copper-binding domain of the membrane copper transporters ATP7A and ATP7B. ATOX1 has also been suggested to have a potential anti-oxidant activity. This study investigates the tissue-specific localization of the mouse homolog, Atox1, in mouse liver and kidney. Immunohistochemical studies in the liver localize the copper chaperone to hepatocytes surrounding both hepatic and central veins. In the kidney, Atox1 is localized to the cortex and the medulla. Cortex immunostaining is specific to glomeruli in both the juxtamedullary and cortical nephrons. Expression in the medulla appears to be associated with the loops of Henle. These data suggest that localized regions in the liver and kidney express Atox1 and have a role in copper homeostasis and/or anti-oxidant protection. Twenty-seven patients with Wilson disease-like phenotypes and two patients with Menkes disease-like phenotypes were screened for ATOX1 mutations with no alterations detected. The human phenotype resulting from mutations in ATOX1 remains unidentified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号