首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
14CO2 assimilation was studied with diploid, tetraploid, hexaploidspecies of the genera Triticum and their wild relatives Aegilops.Attached mature leaves of 3–4 weekold plants were allowedto undergo photosynthesis under air at ambient temperature.The pattern of distribution of 14C was notably similar in Triticumand Aegilops species whatever the level of ploidy. Sucrose wasthe sink for photosynthetic carbon. 14C for sucrose synthesis was supplied either through the glycolatepathway by glycolate, the product of the photorespiration orby the Calvin cycle intermediates exported into the cytoplasm.Depending on the species, the glycolate pathway provided 40to 75%of the sucrose 14C. The higher labeling of sucrose was associated with the greaterparticipation of the glycolate pathway in the wild diploid (DD)A. squarrosa and in the cultivated hexaploid (AABBDD) T. aestivum.The results suggest that the expression of the male D genomeis dominant over the female AB genome in T. aestivum. In T. aestivum under ambient conditions lowering (low temperature)or hindering (1% O2 ) photorespiration, sucrose labeling decreased,but serine and glycine labeling was favoured. We propose thatin wheat leaves, the role of photorespiration is to drain artof the carbon exported from the chloroplast as glycolate, towardssucrose synthesis. (Received March 16, 1979; )  相似文献   

2.
Seventy-one wild and primitive diploid accessions of the S-,A- and D-genome species of Aegilops and Triticum, one tetraploidwheat, T. turgidum L. var. durum Desf., ‘Mexicali’,and two hexaploid wheats, T. aestivum L., ‘Anza’and ‘Yecora Rojo’ were evaluated and compared forprotein and lysine contents, carbon isotope discrimination,and various agronomic traits in the 1987–88 season underfield conditions. Significant variability was observed amongthe 71 accessions and among the three genomes for all traits.For most characters, the D-genome species exhibited the mostvariation, followed by the A- and S-genome species. Aegilopssquarrosa, T. urartu, and T. boeoticum showed large variationfor harvest index. Large variation for grain yield was exhibitedby Ae. squarrosa, Ae. sharonensis and Ae. longissima, whichcould be exploited in hybridization and breeding programs withmodern cultivars. The mean protein and lysine values of thediploids were significantly higher than those of the moderncultivars. The S- and A-genome accessions had higher proteinand lysine contents than the D genome. Among genomes, the meanvalues for yield and harvest index were significantly greaterin S- and D-genome accessions than in the A-genome accessions. The correlation pattern between yield and quality traits wasdifferent in the three genomes. Superior accessions with regardto both grain yield and quality traits were identified in eachspecies studied, except Ae. longissima and Ae. sharonensis.The advantages and uses of these accessions in wheat breedingprograms are discussed. Aegilops spp, Triticum spp, protein and lysine contents, yield components, carbon isotope discrimination  相似文献   

3.
NICHOLLS  P. B. 《Annals of botany》1974,38(4):827-837
A cultivar from each of four cereal species (Avena sativa L.,cv. Swan, Hordeum vulgare, L., cv. Clipper, Triticum aestivumL., cv. Gabo, and Secale cereale L., cv. South Australian Rye)was grown in controlled environment chambers in a 10-h photoperiod(short days) or 10-h photoperiod supplemented with a 6-h extensionby incandescent light. The developmental morphology of the inflorescenceswas followed to ascertain whether there were any common developmentalinterrelationships between the species. Inflorescence internodeelongation was initiated when the floret initial first appeared,irrespective of whether it occurred on the most advanced lateralspikelet or on the terminal spikelet of the rachis. The glumes(infertile bracts) of the terminal spikelet of the rachis wereinitiated when the first second-order inflorescence branch appeared,irrespective of whether the second-order inflorescence branchwas a floret initial or a lateral spikelet, as in Triticum sp.,or an inflorescence (panicle) branch, as in Avena sp. Cessationof the activity of the apical meristem, as measured by primordiumformation, was not correlated with any particular stage of floraldevelopment but appeared to be due to a lack of nutrients causedby an increasing competitiveness for the available nutrientsfrom the developing spikelets which are situated closer to thevascular system than the apical meristem.  相似文献   

4.
Salt Tolerance in the Triticeae: K/Na Discrimination in Barley   总被引:5,自引:4,他引:1  
Concentrations of ions were measured in the youngest fully-expandedleaves of Triticum aestivum, T. durum, Hordeum vulgare, H. spontaneum,Secale cereale, and Aegilops squarrosa accessions grown in hydroponicculture in the presence of salt (NaCl+CaCl2). Triticum aestivum,Secale cereale, and Ae. squarrosa had the low leaf Na and highleaf K concentrations typical of plants which contain the enhancedK/Na discrimination character originally found in Ae. squarrosa.T. durum and the Hordeum species did not have this character.The better growth of H. vulgare than of T. durum with similarsalt concentrations in the youngest fully-expanded leaves maybe a result of better compartmentation of Na, Cl, and K betweendifferent tisssues or between different compartments withincells. The enhanced K/Na discrimination character was expressedin disomic addition lines of H. vulgare chromosomes in Triticumaestivum. The H. vulgare variety Herta and its slender mutantboth had similar leaf cation concentrations, although they differedin growth rate when grown at 60 mol m–3 NaCl. H. vulgareand T. durum seedlings grown in the absence of monovalent cationsaccumulated more 22Na in their shoots than seedlings of otherspecies when incubated in 1.0 mol m–3 NaCl labelled with22Na. Key words: Salt, ion transport, I genome, barley, wheat  相似文献   

5.
Morphological and anatomical parameters which are variable underroot anaerobiosis in Triticum aestivum were checked on fivetaxa of primitive and modern wheats (and the related genus Aegilops).The plants were grown in nutrient solution which was eitheraerated or flushed with nitrogen. When the plants were flushedwith nitrogen a general retardation in longitudinal root growthoccurred in all of them, but only Triticum aestivum showed aclear promotion of growth of later appearing roots enablingit to maintain the same root/shoot ratio even under stress conditions.There was an increase in the volume of intercellular space inthe root cortex of nearly all the plants investigated. The diameterand the lignin content of the roots and the form of their corticalcells also varied. All these changes were expressed in the primitivewheats to a lesser extent than in the advanced Triticum aestivumindicating that there is a clear increase in the adaptive responsein the latter. Triticum species, Aegilops species, wheat, roots, anatomy, anaerobiosis, stress, intercellular space, selection  相似文献   

6.
We assessed the molecular genetic diversity and relationships among some Aegilops and Triticum species using 15 start codon-targeted (SCoT) polymorphism markers. A total of 166 bands amplified, of which 164 (98.79%) were polymorphic. Analysis of molecular variance and inter-population differentiation (Gst) indicated high genetic variation within the studied populations. Our analyses revealed high genetic diversity in T. boeoticum, Ae. cylindrica, T. durum and Ae. umbellulata, low diversity in Ae. crassa, Ae. caudata and Ae. speltoides, and a close relationship among Ae. tauschii, T. aestivum, T. durum, T. urartu, and T. boeoticum. Cluster analysis indicated 180 individuals divided into 8 genome homogeneous clades and 11 sub-groups. T. aestivum and T. durum accessions were grouped together, and accessions with the C and U genomes were grouped into the same clade. Our results support the hypothesis that T. urartu and Ae. tauschii are two diploid ancestors of T. aestivum, and also that Ae. caudata and Ae. umbellulata are putative donors of C and U genomes for other Aegilops species that possess these genomes. Our results also revealed that the SCoT technique is informative and can be used to assess genetic relationships among wheat germplasm.  相似文献   

7.
Summary Endosperm protein components from common bread wheats (Triticum aestivum L.) and related species were extracted with aluminum lactate, pH 3.2, and examined by electrophoresis in the same buffer. Electrophoretic patterns of the albumins and globulins were compared to evaluate the possibility that a particular species might have contributed its genome to tetraploid or hexaploid wheat. Together with protein component mobilities, differential band staining with Coomassie Brilliant Blue R250 was employed to test the identity or non-identity of bands. Eight species and 63 accessions, representative of Triticum and Aegilops were tested. Considerable intraspecific variation was observed for patterns of diploid but not for tetraploid or hexaploid species. Patterns of some accessions of Triticum urartu agreed closely with major parts of the patterns of Triticum dicoccoides and T. aestivum. A fast-moving, green band was found in all accessions of T. urartu and of Triticum boeoticum, however, that was not found in those of T. dicoccoides or T. aestivum. This band was present in all accessions of Triticum araraticum and Triticum zhukovskyi. Patterns of Aegilops longissima, which has been suggested as the donor of the B genome, differed substantially from those of T. dicoccoides and T. aestivum. Finally, two marker proteins of intermediate mobility were also observed and may be used to discriminate between accessions of T. araraticum/T. zhukovskyi and those of T. dicoccoides/T. aestivum.  相似文献   

8.
Single- and low-copy genes are less likely to be subject to concerted evolution. Thus, they are appropriate tools to study the origin and evolution of polyploidy plant taxa. The plastid 3-phosphoglycerate kinase gene (Pgk-1) sequences from 44 accessions of Triticum and Aegilops, representing diploid, tetraploid, and hexaploid wheats, were used to estimate the origin of Triticum petropavlovskyi. Our phylogenetic analysis was carried out on exon+intron, exon and intron sequences, using maximum likelihood, Bayesian inference and haplotype networking. We found the D genome sequences of Pgk-1 genes from T. petropavlovskyi are similar to the D genome orthologs in T. aestivum, while their relationship with Ae. tauschii is more distant. The A genome sequences of T. petropavlovskyi group with those of T. polonicum, but its Pgk-1 B genome sequences to some extent diverge from those of other species of Triticum. Our data do not support for the origin of T. petropavlovskyi either as an independent allopolyploidization event between Ae. tauschii and T. polonicum, or as a monomendelian mutation in T. aestivum. We suggest that T. petropavlovskyi originated via spontaneous introgression from T. polonicum into T. aestivum. The dating of this introgression indicates an age of 0.78 million years; a further mutation event concerning the B genome occurred 0.69 million years ago.  相似文献   

9.
Protein profiles of Triticum and Aegilops species were obtained by electrophoresis of crude seed extracts on polyacrylamide gels. All subspecies of the hexaploid T. aestivum (AABBDD) showed a very uniform profile that could be closely simulated only by the pattern produced by a protein mixture (2:1) from specific profile types of the ancient tetraploid cultivar T. dicoccum (AABB) and the wild diploid Ae. squarrosa (DD). An exceptional hexaploid pattern occurred only in some accessions of T. aestivum ssp. macha. These results confirm the parentage of the aestivum hexaploids in general as T. dicoccum and Ae. squarrosa and more specifically identify the type of the D-genome donor. They suggest that these wheats, excepting the aberrant macha types, had essentially a monophyletic origin in southwestern Asia. They favor the hypotheses that the cultivated aestivum wheats were derived from the so-called primitive spelta complex primarily by mutation of a single gene governing the free threshing character and that alpine spelta represents an element displaced from the area of endemism.  相似文献   

10.
Silicon deposits in the elongating basal internodes of almostmature, field grown specimens of Avena sativa, Hordeum sativumand Triticum aestivum were investigated using electron-probemicroanalysis. In A. sativa and H. sativum silicon was foundto be confined to the cells in the endodermal layer, being presentwithin the inner tangential and radial walls, and occasionallyin the outer tangential wall. In T. aestivum some silicon wasalso located in walls of cells surrounding the vascular bundles. The anatomy of the internodal tissues is discussed for the threespecies from light micrographs. The endodermal layer is discontinuousin A. sativa and H. sativum, in the former species it partlyextends around individual vascular bundles. In T. aestivum itforms a complete cylinder around the stelar region and alsoshows considerably more thickening of the inner tangential wallthan in the other species. The results are discussed in relation to the anatomy of theinternodal tissues and the possible function of silicon in theendodermis. Avena sativa L., Hordeum sativum Jess, Triticum aestivum L., oat, barley, wheat, silicon deposition, electron-probe microanalysis  相似文献   

11.
To elucidate the phylogenetic relationships and cytoplasmic types, restriction endonuclease fragment patterns of chloroplast (cp) and mitochondrial (mt) DNAs isolated from two different accessions of Dasypyrum villosum (L.) candargy were compared with those of tetraploid wheat (Triticum durum Desf., PI265007), hexaploid wheat (Triticum aestivum L., cv Chinese Spring), Aegilops longissimum (S. and M., in Muschli) Bowden and Hordeum vulgare L. T. aestivum and T. durum had identical restriction patterns for their cp and mtDNAs in digestions with four different enzymes. Likewise, no differences were found between the restriction fragment patterns of two accessions of D. villosum. But, there were distinct differences in chloroplast and mitochondrial DNA restriction fragment patterns between D. villosum and tetraploid and hexaploid wheats. A. longissimum (G609) showed a similar pattern to those wheats for PstI digestion of cpDNA. Organellar DNA from Hordeum vulgare (cv Himalaya) showed a distinctly different restriction pattern from those of wheat and D. villosum. These results suggest that D. villosum is unlikely to be the donor of cytoplasm to wheats, and its cytoplasmic organelles were also different from those of A. longissimum.Contribution No. 92-522-J from the Kansas Agricultural Experiment Station; Kansas State University, Manhattan, Kansas, USA  相似文献   

12.
Summary An immunological reaction, precipitation in gel, was produced using a rabbit antiserum directed to a specific protein constantly present in bread wheats (T. aestivum, genome AABBDD), but absent in durum wheat (T. durum Desf., genome AABB). This protein was isolated in the soluble-protein fraction of bread wheat caryopses by combined biochemical and immunological techniques.The availability of such a specific anti-bread wheat serum made possible the analysis of a series of varieties and species of wheat and of some closely related (Secale, Aegilops) and less closely related (Hordeum, Haynaldia) taxa to determine whether the protein was present or absent. Hordeum vulgare, Haynaldia villosa, Triticum monoccocum and Triticum turgidum gave a negative result, while positive results were obtained in T. aestivum, T. timopheevi, T. zhukovskyi, Secale cereale, Aegilops speltoides, Ae. mutica, Ae. comosa, Ae. caudata, Ae. umbellulata, Ae. squarrosa, and also in the artificial amphiploids (Ae. speltoides x T. monococcum) and (Ae. caudata x T. monococcum).It is concluded that these results agree closely with the classification of Triticum proposed by MacKey in 1966. The investigated protein not only permits the differentiation of T. aestivum from T. turgidum, but also T. turgidum from T. timopheevi at tetraploid level and T. monococcum from all the diploid species of Aegilops.  相似文献   

13.
Wild and cultivated barleys show similar affinities for mineral nitrogen   总被引:3,自引:0,他引:3  
Arnold J. Bloom 《Oecologia》1985,65(4):555-557
Summary The kinetics of net ammonium influx were very similar among several cultivars of barley (Hordeum vulgare) and several accessions of the wild taxa H.v. spontaneum and H. jubatum. For net nitrate influx, variation was greater among accessions than among species; accessions from warmer climates had faster rates than those from colder climates. These data indicate that domestication of barley has not reduced its affinity for mineral nitrogen.  相似文献   

14.
Quantitative anatomical and other measurements were made onfully expanded flag leaves of a series of diploid, tetraploidand hexaploid Triticum and Aegilops species, and photosyntheticrates per unit leaf area were measured at light saturation (Pmax). Diploids had the highest Pmax, hexaploids the lowest with tetraploidsbeing intermediate. The anatomical features of tetraploids andhexaploids were generally similar, but different from the diploids.The diploids had thinner leaves with less dry matter and chlorophyllper unit area. The surface area of the mesophyll cells per unitvolume of mesophyll tissue was similar for all ploidy levels,as was the ratio mesophyil cell surface area per unit leaf area.It is argued that while these anatomical features are unlikelyto account for the observed variation in Pmax, it is possiblethat other structural factors with which they are correlatedmay causally influence Pmax. One such feature is the averagediffusion path length from the plasmalemma at the cell surfaceto the sites of carboxylation. Anatomy, photosynthesis, mesophyll, cell size, Triticum, Aegilops, polyploidy  相似文献   

15.
Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Based on the sequences of a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase (Acc-1), a total of 47 accessions Triticum and Aegilops representing diploid, tetraploid and hexaploid were used to estimate the origin of Triticum petropavlovskyi. Phylogenetic analysis was performed based on the intron, intron + sy and exon data sets sequence using maximum likelihood, neighbor-joining and median-joining networks. The A and B genome sequences from Acc-1 loci show that T. petropavlovskyi shares the highest averaged sequence identity with T. polonicum from Xinjiang and exotic landraces of T. aestivum, and reveals specific progenitor-descendant relationships. The D genome sequences of the Acc-1 genes from T. petropavlovskyi are identical to the sequences of the D genome orthologs in T. aestivum, while the relationship of T. petropavlovskyi and Ae. tauschii are most distant. Our findings do not suggest the probability of an independent allopolyploidization event and a single mutation in T. aestivum in the origin of T. petropavlovskyi, but indicate a greater degree of gene flow between T. aestivum and T. polonicum leading to origin of T. petropavlovskyi. It is most likely that T. petropavlovskyi was originated from T. polonicum from Xinjiang to exotic landraces of T. aestivum via a spontaneous introgression or breeding effort.  相似文献   

16.
Cultivated barley,Hordeum vulgare L., has a single NADH nitrate reductase (NR) gene while diploid wheat,Triticum monococcum, and cultivated hexaploid wheat,Triticum aestivum L., have two NADH NR genes. To determine whether the NADH NR gene was duplicated since the divergence ofTriticum fromHordeum or was deleted from barley, theT. Monococcum NADH NR gene heme-hinge regions were sequenced and compared with the barley NADH NR gene sequence. Sequence identity and phylogenetic analyses showed that one of theT. Monococcum NADH NR genes is more-closely related to the barley NADH NR gene than to the otherT. Monococcum NADH NR gene. The heme-hinge region of all three NR genes appeared to have evolved at a constant rate. These results suggest that the NADH NR gene duplicated before the divergence ofTriticum andHordeum and that a deletion resulted in the loss of one NADH NR gene from cultivated barley.  相似文献   

17.
Early seed development was studied in 17 genotypes of barley,Hordeum vulgare L., and 11 genotypes of rye, Secale cerealeL. The numbers of cells and nuclei in the embryos and endospermsof developing seeds were scored daily for 5 days after selfpollination. For embryos, the mean cell doubling times variedfrom 9.2–12.9 h for barley and 15.7–22.7 h for rye.Endosperm mitotic cycle times of both species were shortestover the first 24 h after pollination but then became longer.A non-linear correlation was found between the number of embryocells and the number of endosperm nuclei in barely and rye andis similar to that for other members of the Triticeae. Hordeum vulgare L., Secale cereale L., barley, rye, embryo, endosperm, mean cell doubling time  相似文献   

18.
Excised embryos of Phaseolus vulgaris incubated in a mediumcontaining 10 mg dm–3 farnesol showed enhanced root growthwhereas the leaves remained rudimentary At lower concentrationsof exogenous farnesol normal leaf development occurred and rootgrowth was comparable to untreated cultures. Enhanced root growthalso occurred when excised embryos of Hordeum vulgare were treatedwith farnesol but only at 10 mg dm–3 and this treatmentdid not prevent leaf growth X-ray micro-probe analysis of leavesrevealed an increased phosphorus content in P vulgaris and adecreased sulphur content in H vulgare in comparison to untreatedplants. Hordeum vulgare L., barley, Phaseolus vulgaris, bean, embryo culture, farnesol, X-ray microprobe analysis, root growth  相似文献   

19.
We have utilised polymorphic chloroplast microsatellites to analyse cytoplasmic relationships between accessions in the genera Triticum and Aegilops. Sequencing of PCR products revealed point mutations and insertions/deletions in addition to the standard repeat length expansion/contraction which most likely represent ancient synapomorphies. Phylogenetic analyses revealed three distinct groups of accessions. One of these contained all the non-Aegilops speltoides S-type cytoplasm species, another comprised almost exclusively A, C, D, M, N, T and U cytoplasm-type accessions and the third contained the polyploid Triticum species and all the Ae. speltoides accessions, further confirming that Ae. speltoides or a closely related but now extinct species was the original B-genome donor of cultivated polyploid wheat. Successive decreases in levels of genetic diversity due to domestication were also observed. Finally, we highlight the importance of elucidating longer-term evolutionary processes operating at microsatellite repeat loci.Communicated by J.S. Heslop-Harrison  相似文献   

20.
Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号