首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I restriction-modification (R-M) endonucleases are composed of three subunits—HsdR, required for restriction, and HsdM and HsdS which can produce a separate DNA methyltransferase. The HsdS subunit is required for DNA recognition. In this paper we describe the effect of clonedEcoKI andEcoR124Ihsd genes on the resulting R-M phenotype. The variability in the expression of the wild type (wt) restriction phenotype after cloning of the wthsd genes in a multicopy plasmid inEscherichia coli recA + background suggests that the increased production of the restriction endonuclease from pBR322 is detrimental to the cell and this leads to the deletion of the clonedhsd genes from the hybrid plasmid and/or inactivation of the enzyme. The effect of a mutation inE. coli recA gene on the expression of R-M phenotype is described and discussed in relation to the role of the cell surface and the localization of the restriction endonuclease in the cell.  相似文献   

2.
A Type IC Restriction-Modification System in Lactococcus lactis   总被引:1,自引:0,他引:1       下载免费PDF全文
Three genes coding for the endonuclease, methylase, and specificity subunits of a type I restriction-modification (R-M) system in the Lactococcus lactis plasmid pIL2614 have been characterized. Plasmid location, sequence homologies, and inactivation studies indicated that this R-M system is most probably of type IC.  相似文献   

3.
Antirestriction proteins Ard encoded by some self-transmissible plasmids specifically inhibit restriction by members of all three families of type I restriction-modification (R-M) systems in E.coli. Recently, we have identified the amino acid region, 'antirestriction' domain, that is conserved within different plasmid and phage T7-encoded antirestriction proteins and may be involved in interaction with the type I R-M systems. In this paper we demonstrate that this amino acid sequence shares considerable similarity with a well-known conserved sequence (the Argos repeat) found in the DNA sequence specificity (S) polypeptides of type I systems. We suggest that the presence of these similar motifs in restriction and antirestriction proteins may give a structural basis for their interaction and that the antirestriction action of Ard proteins may be a result of the competition between the 'antirestriction' domains of Ard proteins and the similar conserved domains of the S subunits that are believed to play a role in the subunit assembly of type I R-M systems.  相似文献   

4.
We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the killer plasmid. The only surviving bacteria are those which carry the gene specifying a protective DNA methyltransferase. Conceptually, this in vivo selection approach resembles earlier methods in which a plasmid library was selected in vitro by digestion with a suitable restriction endonuclease, but it is much more efficient than those methods. The new method was successfully used to clone two R-M systems, BstZ1II from Bacillus stearothermophilus 14P and Csp231I from Citrobacter sp. strain RFL231, both isospecific to the prototype HindIII R-M system.  相似文献   

5.
The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT®) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems, including frameshift-mediated changes of sequence specificity and the interaction of one MTase with two alternative specificity subunits resulting in different methylation patterns. The methylomes of these well-characterized H. pylori strains will provide a valuable resource for future studies investigating the role of H. pylori R-M systems in limiting transformation as well as in gene regulation and host interaction.  相似文献   

6.
Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon—‘phasevarion’. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5′-CGAAT-3′. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra- and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R-M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function.  相似文献   

7.
DNA restriction-modification systems mediate plasmid maintenance.   总被引:8,自引:3,他引:5       下载免费PDF全文
Two plasmid-carried restriction-modification (R-M) systems, EcoRI (from pMB1 of Escherichia coli) and Bsp6I (from pXH13 of Bacillus sp. strain RFL6), enhance plasmid segregational stability in E. coli and Bacillus subtilis, respectively. Inactivation of the endonuclease or the presence of the methylase in trans abolish the stabilizing activity of the R-M systems. We propose that R-M systems mediate plasmid segregational stability by postsegregational killing of plasmid-free cells. Plasmid-encoded methyltransferase modifies host DNA and thus prevents its digestion by the restriction endonuclease. Plasmid loss entails degradation and/or dilution of the methylase during cell growth and appearance of unmethylated sites in the chromosome. Double-strand breaks, introduced at these sites by the endonuclease, eventually cause the death of the plasmid-free cells. Contribution to plasmid stability is a previously unrecognized biological role of the R-M systems.  相似文献   

8.
Using transposon shuttle mutagenesis, we identified six Helicobacter pylori mutants from the NTUH-C1 strain that exhibited decreased adherence and cell elongation. Inverse polymerase chain reaction and DNA sequencing revealed that the same locus was interrupted in these six mutants. Nucleotide and amino acid sequences showed no homologies with H. pylori 26695 and J99 strains. This novel open reading frame contained 1617 base pairs. The amino acid sequence shared 24% identity with a putative nicking enzyme in Bacillus halodurans and 23 and 20% identity with type IIS restriction endonucleases PleI and MlyI, respectively. The purified protein, HpyC1I, showed endonuclease activity with the recognition and cleavage site 5'-CCATC(4/5)-3'. Two open reading frames were located upstream of the gene encoding HpyC1I. Together, HpyC1I and these two putative methyltransferases (M1.HpyC1I and M2.HpyC1I) function as a restriction-modification (R-M) system. The HpyC1I R-M genes were found in 9 of the 15 H. pylori strains tested. When compared with the full genome, significantly lower G + C content of HpyC1I R-M genes implied that these genes might have been acquired by horizontal gene transfer. Plasmid DNA transformation efficiencies and chromosomal DNA digestion assays demonstrated protection from HpyC1I digestion by the R-M system. In conclusion, we have identified a novel R-M system present in approximately 60% of H. pylori strains. Disruption of this R-M system results in cell elongation and susceptibility to HpyC1I digestion.  相似文献   

9.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.  相似文献   

10.
We have cloned the M and S genes of the restriction-modification (R-M) system AhdI and have purified the resulting methyltransferase to homogeneity. M.AhdI is found to form a 170 kDa tetrameric enzyme having a subunit stoichiometry M2S2 (where the M and S subunits are responsible for methylation and DNA sequence specificity, respectively). Sedimentation equilibrium experiments show that the tetrameric enzyme dissociates to form a heterodimer at low concentration, with Kd ≈ 2 µM. The intact (tetrameric) enzyme binds specifically to a 30 bp DNA duplex containing the AhdI recognition sequence GACN5GTC with high affinity (Kd ≈ 50 nM), but at low enzyme concentration the DNA binding activity is governed by the dissociation of the tetramer into dimers, leading to a sigmoidal DNA binding curve. In contrast, only non-specific binding is observed if the duplex lacks the recognition sequence. Methylation activity of the purified enzyme was assessed by its ability to prevent restriction by the cognate endonuclease. The subunit structure of the M.AhdI methyltransferase resembles that of type I MTases, in contrast to the R.AhdI endonuclease which is typical of type II systems. AhdI appears to be a novel R-M system with properties intermediate between simple type II systems and more complex type I systems, and may represent an intermediate in the evolution of R-M systems.  相似文献   

11.
12.
Genes for the class IIPseudomonas alcaligenesNCIB 9867 restriction-modification (R-M) system,Pac25I, have been cloned from its 33-kb endogenous plasmid, pRA2. ThePac25I endonuclease and methylase genes were found to be aligned in a head-to-tail orientation with the methylase gene preceding and overlapping the endonuclease gene by 1 bp. The deduced amino acid sequence of thePac25I methylase revealed significant similarity with theXcyI,XmaI,Cfr9I, andSmaI methylases. High sequence similarity was displayed between thePac25I endonuclease and theXcyI,XmaI, andCfr9I endonucleases which cleave between the external cytosines of the recognition sequence (i.e., 5′-C↓CCGGG-3′) and are thus perfect isoschizomers. However, no sequence similarity was detected between thePac25I endonuclease and theSmaI endonuclease which cleaves between the internal CpG of the recognition sequence (i.e., 5′-CCC↓GGG-3′). Both thePac25I methylase and endonuclease were expressed inEscherichia coli.An open reading frame encoding a protein which shows significant similarity to invertases and resolvases was located immediately upstream of thePac25I R-M operon. In addition, a transposon designated Tn5563was located 1531 bp downstream of the R-M genes. The location on a self-transmissible plasmid as well as the close association with genes involved in DNA mobility suggests horizontal transfer as a possible mode of distribution of this family of R-M genes in various bacteria.  相似文献   

13.
KpnBI is a restriction-modification (R-M) system recognized in the GM236 strain of Klebsiella pneumoniae. Here, the KpnBI modification genes were cloned into a plasmid using a modification expression screening method. The modification genes that consist of both hsdM (2631 bp) and hsdS (1344 bp) genes were identified on an 8.2 kb EcoRI chromosomal fragment. These two genes overlap by one base and share the same promoter located upstream of the hsdM gene. Using recently developed plasmid R-M tests and a computer program RM Search, the DNA recognition sequence for the KpnBI enzymes was identified as a new 8 nt sequence containing one degenerate base with a 6 nt spacer, CAAANNNNNNRTCA. From Dam methylation and HindIII sensitivity tests, the methylation loci were predicted to be the italicized third adenine in the 5′ specific region and the adenine opposite the italicized thymine in the 3′ specific region. Combined with previous sequence data for hsdR, we concluded that the KpnBI system is a typical type I R-M system. The deduced amino acid sequences of the three subunits of the KpnBI system show only limited homologies (25 to 33% identity) at best, to the four previously categorized type I families (IA, IB, IC, and ID). Furthermore, their identity scores to other uncharacterized putative genome type I sequences were 53% at maximum. Therefore, we propose that KpnBI is the prototype of a new ‘type IE’ family.  相似文献   

14.
We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the killer plasmid. The only surviving bacteria are those which carry the gene specifying a protective DNA methyltransferase. Conceptually, this in vivo selection approach resembles earlier methods in which a plasmid library was selected in vitro by digestion with a suitable restriction endonuclease, but it is much more efficient than those methods. The new method was successfully used to clone two R-M systems, BstZ1II from Bacillus stearothermophilus 14P and Csp231I from Citrobacter sp. strain RFL231, both isospecific to the prototype HindIII R-M system.  相似文献   

15.
Tetracycline-producing strains ofStreptomyces aureofaciens expressedSauLPI restriction-modification (R-M) system, which recognized specific DNA sequence 5′-GCCGGC-3′ (isoschizomerNaeI). The activation of the second R-M systemSauLPII (5′-GAGCTC-3′, isoschizomer ofXhoI), which was silent during the growth cycle, after a foreign DNA transfer into this strain was observed. This phenomenon was tentatively explained as a response of the cells against the exogenous DNA entering the cells. The involvement of a SOS-like response in induction of R-M system genes inS. aureofaciens strains has been considered.  相似文献   

16.
17.
Single copy probes derived from CpG-rich island clones fromEag I andNot I linking libraries and nine rare-cutter restriction endonucleases were used to investigate the methylation status of CpG-rich islands on the inactive and active X chromosomes (Chr) of the mouse. Thirteen of the 14 probes used detected CpG-rich islands in genomic DNA. The majority of island CpGs detected by rare-cutter restriction endonucleases were methylated on the inactive X Chr and unmethylated on the active X Chr, but some heterogeneity within the cell population used to make genomic DNA was detected. The CpG-rich islands detected by two putative pseudoautosomal probes remained unmethylated on both the active and inactive X Chrs. Otherwise, distance from the X Chr inactivation center did not affect the methylation profile of CpG-rich islands. We conclude that methylation of CpG-rich islands is a general feature of X Chr inactivation.  相似文献   

18.
19.
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies—so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kanr) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kanr mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号