首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hegeman AD  Gross JW  Frey PA 《Biochemistry》2001,40(22):6598-6610
A model of the Escherichia coli dTDP-glucose-4,6-dehydratase (4,6-dehydratase) active site has been generated by combining amino acid sequence alignment information with the 3-dimensional structure of UDP-galactose-4-epimerase. The active site configuration is consistent with the partially refined 3-dimensional structure of 4,6-dehydratase, which lacks substrate-nucleotide but contains NAD(+) (PDB file ). From the model, two groups of active site residues were identified. The first group consists of Asp135(DEH), Glu136(DEH), Glu198(DEH), Lys199(DEH), and Tyr301(DEH). These residues are near the substrate-pyranose binding pocket in the model, they are completely conserved in 4,6-dehydratase, and they differ from the corresponding equally well-conserved residues in 4-epimerase. The second group of residues is Cys187(DEH), Asn190(DEH), and His232(DEH), which form a motif on the re face of the cofactor nicotinamide binding pocket that resembles the catalytic triad of cysteine-proteases. The importance of both groups of residues was tested by mutagenesis and steady-state kinetic analysis. In all but one case, a decrease in catalytic efficiency of approximately 2 orders of magnitude below wild-type activity was observed. Mutagenesis of each of these residues, with the exception of Cys187(DEH), which showed near-wild-type activity, clearly has important negative consequences for catalysis. The allocation of specific functions to these residues and the absolute magnitude of these effects are obscured by the complex chemistry in this multistep mechanism. Tools will be needed to characterize each chemical step individually in order to assign loss of catalytic efficiency to specific residue functions. To this end, the effects of each of these variants on the initial dehydrogenation step were evaluated using a the substrate analogue dTDP-xylose. Additional steady-state techniques were employed in an attempt to further limit the assignment of rate limitation. The results are discussed within the context of the 4,6-dehydratase active site model and chemical mechanism.  相似文献   

2.
Biodiversity is fundamental to both eukaryote and prokaryote ecology, yet investigations of diversity often differ markedly between the two disciplines. Host specificity - the association of organisms with only a few (specialism) or many (generalism) host species - is recognized within eukaryote ecology as a key determinant of diversity. In contrast, its implications for microbial diversity have received relatively little attention. Here we explore the relationship between microbial diversity and host specificity using marine sponge-bacteria associations. We used a replicated, hierarchical sampling design and both 16S rDNA- and rpoB-based denaturing gradient gel electrophoresis (DGGE) to examine whether three co-occurring sponges from temperate Australia -Cymbastela concentrica, Callyspongia sp. and Stylinos sp. - contained unique, specialized communities of microbes. Microbial communities varied little within each species of sponge, but variability among species was substantial. Over five seasons, the microbial community in C. concentrica differed significantly from other sponges, which were more similar to seawater. Overall, three types of sponge-associated bacteria were identified via 16S rDNA sequencing of excised DGGE bands: 'specialists'- found on only one host species, 'sponge associates'- found on multiple hosts but not in seawater, and 'generalists' from multiple hosts and seawater. Analogous to other high diversity systems, the degree of specificity of prokaryotes to host eukaryotes could have a potentially significant effect on estimates of marine microbial diversity.  相似文献   

3.
《Genomics》2020,112(1):805-808
The present study is aimed to determine the draft genome of novel species of Zooshikella strain S2.1, a potential red pigmented strain isolated recently from the coastal sediment of Andaman and Nicobar Islands, India. This Gram negative, rod shaped aerobic bacterium produces pink, yellowish-red and dark red with metallic green sheen pigmentation on agar plates. It is able to grow under NaCl concentrations of 1 to 9%. This species has antimicrobial, antioxidant, dye and food colorant applications. Whole genome sequence analysis revealed that strain S2.1 represents a novel species of the genus Zooshikella. Draft genome and 16 s rRNA sequences of this species were deposited in GenBank under the Sequence Read Archive accession number PRJNA514840 and GenBank number MK680108, respectively. Here we report the draft genome of Zooshikella sp. strain S2.1 with ~5.9 Mb of chromosomal content and ~0.34 Mb of extra-chromosomal content.  相似文献   

4.
The enzyme GDP-D-mannose 4,6-dehydratase has been purified 1500-fold from porcine thyroid tissue. The enzyme exhibits a molecular mass of 251000 Da as determined by sedimentation techniques. Its subunit size was determined as 41500 Da by dodecyl sulfate gel electrophoresis. The enzyme has a Km of 3.3 microM with respect to GDP-D-mannose and appears specific with respect to this substrate. The enzyme appears to be inhibited by guanine nucleotides and by guanine nucleotide sugars. It is particularly susceptible to inhibition by GDP-L-fucose. It is suggested that this compound may have a physiological function as an end-product feedback inhibitor.  相似文献   

5.
Natural products are a functionally diverse class of biochemically synthesized compounds, which include antibiotics, toxins, and siderophores. In this paper, we describe both the detection of natural product activities and the sequence identification of gene fragments from two molecular systems that have previously been implicated in natural product production, i.e., nonribosomal peptide synthetases (NRPSs) and modular polyketide synthases (PKSs), in diverse marine and freshwater cyanobacterial cultures. Using degenerate PCR and the sequencing of cloned products, we show that NRPSs and PKSs are common among the cyanobacteria tested. Our molecular data, when combined with genomic searches of finished and progressing cyanobacterial genomes, demonstrate that not all cyanobacteria contain NRPS and PKS genes and that the filamentous and heterocystous cyanobacteria are the richest sources of these genes and the most likely sources of novel natural products within the phylum. In addition to validating the use of degenerate primers for the identification of PKS and NRPS genes in cyanobacteria, this study also defines numerous gene fragments that will be useful as probes for future studies of the synthesis of natural products in cyanobacteria. Phylogenetic analyses of the cyanobacterial NRPS and PKS fragments sequenced in this study, as well as those from the cyanobacterial genome projects, demonstrate that there is remarkable diversity and likely novelty of these genes within the cyanobacteria. These results underscore the potential variety of novel products being produced by these ubiquitous organisms.  相似文献   

6.
TDP-D-glucose 4,6-dehydratase, which converts TDP-D-glucose to TDP-D-4-keto-6-deoxyglucose, was purified to near-homogeneity from the daunorubicin and baumycin-producing organism Streptomyces sp. C5 (968-fold purification with a 41% recovery), and from the daunorubicin producer Streptomyces peucetius ATCC 29050 (1000-fold purification with a 37% recovery). The TDP-D-glucose 4,6-dehydratases from Streptomyces sp. C5 and S. peucetius were determined by SDS-PAGE and HPLC gel filtration to be homodimers with subunit relative molecular masses of 39,000 and 36,000, respectively. For the enzymes from both organisms, negligible activity was observed in the absence of added NAD+, or when ADP-glucose, ADP-mannose, GDP-mannose, UDP-glucose or UDP-galactose was substituted for TDP-D-glucose as substrate. For the enzyme from Streptomyces sp. C5, the K'm values for NAD+ and TDP-D-glucose were 19.2 microM and 31.3 microM, respectively. The V'max for TDP-D-glucose was 309 nmol min-1 (mg protein)-1. For the S. peucetius enzyme, the K'm values for NAD+ and TDP-D-glucose were 20.1 microM and 34.7 microM, respectively. V'max values were 180 nmol min-1 (mg protein)-1 for NAD+ and 201 nmol min-1 (mg protein)-1 for TDP-D-glucose. TDP was a good inhibitor of TDP-D-glucose 4,6-dehydratase from both organisms. The N-terminal amino acid sequence of the TDP-D-glucose 4,6-dehydratase from S. peucetius and from the erythromycin producer, Saccharopolyspora erythraea, were similar, whereas the enzyme from Streptomyces sp. C5 contained a different N-terminal amino acid sequence from either of the other two enzymes.  相似文献   

7.
Of eight laboratory cultures of marine gamma- and alpha-Proteobacteria tested, growth on glycolate as a sole carbon source was detected for only three species: Pseudomonas stutzeri, Oceanimonas doudoroffii and Roseobacter sp. isolate Y3F. Degenerate polymerase chain reaction (PCR) primers were designed to amplify glcD, which encodes the D-subunit of the enzyme glycolate oxidase; glcD could be amplified only from those cultures that grew on glycolate. The PCR primers were used to explore glcD diversity in four field samples collected from different ocean environments: an Atlantic Gulf Stream Ring, sampled above and below the thermocline and two Pacific coastal sites, Parks Bay and San Juan Channel, WA. Environmental glcD sequences belonged to six major bacterial phylogenetic groups, with most sequences forming novel clades with no close relatives. Different patterns of glcD diversity were observed within and between the two nutrient regimes. Comparison of glcD and 16S rDNA diversity and analyses of available bacterial genomes and a metgenomic library from the Sargasso Sea show that glycolate-utilizing potential exists in only a subset of bacteria. Glycolate is produced in marine environments mainly by phytoplankton. Examination of glcD diversity will aid in understanding the influence of phytoplankton on bacterial community structure.  相似文献   

8.
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment.  相似文献   

9.
In this study two open reading frames, namely HP0044 and HP0045 from H. pylori, were cloned and overexpressed in E. coli. The two recombinant proteins were demonstrated to have GDP-d-mannose 4,6-dehydratase (GMD) and GDP-l-fucose synthetase (GFS) activities, respectively. The recombinant GMD was a tetramer and had an optimum pH of 6.5. Exogenous NADP(+) was essential for its activity. The K(m) and K(cat) for GDP-d-mannose were 117.3 microM and 0.27 s(-1), respectively. The recombinant GFS was a homodimer with an optimum pH of 8.0. The K(m) and K(cat) for GDP-4-keto-6-deoxy-d-mannose were 64.08 microM and 0.75 s(-1), respectively. It can use both NADPH and NADH, but less efficient with the latter. Amino acid sequence alignment and phylogenetic analysis showed that H. pylori GFS was highly homologous to the GFS of E. coli O111 and both of them were located on a separate phylogenetic branch from other GFS. The unique clustering and origin of the two genes were also discussed.  相似文献   

10.
A growing number of marine fungi are the sources of novel and potentially life-saving bioactive secondary metabolites. Here, we have discussed some of these novel antibacterial, antiviral, antiprotozoal compounds isolated from marine-derived fungi and their possible roles in disease eradication. We have also discussed the future commercial exploitation of these compounds for possible drug development using metabolic engineering and post-genomics approaches.  相似文献   

11.
Hegeman AD  Gross JW  Frey PA 《Biochemistry》2002,41(8):2797-2804
The conversion of dTDP-glucose into dTDP-4-keto-6-deoxyglucose by Escherichia coli dTDP-glucose 4,6-dehydratase (4,6-dehydratase) takes place in the active site in three steps: dehydrogenation to dTDP-4-ketoglucose, dehydration to dTDP-4-ketoglucose-5,6-ene, and rereduction of C6 to the methyl group. The 4,6-dehydratase makes use of tightly bound NAD(+) as the coenzyme for transiently oxidizing the substrate, activating it for the dehydration step. Dehydration may occur by either of two mechanisms, enolization of the dTDP-4-ketoglucose intermediate, followed by elimination [as proposed for beta-eliminations by Gerlt, J. A., and Gassman, P. G. (1992) J. Am. Chem. Soc. 114, 5928-5934], or a concerted 5,6-elimination of water from the intermediate. To assign one of these two mechanisms, a simultaneous kinetic characterization of glucosyl C5((1)H/(2)H) solvent hydrogen and C6((16)OH/(18)OH) solvent oxygen exchange was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The reaction of the wild-type enzyme is shown to proceed through a concerted dehydration mechanism. Interestingly, mutation of Asp135, the acid catalyst, to Asn or Ala alters the mechanism, allowing enolization to occur to varying extents. While aspartic acid 135 is the acid catalyst for dehydration in the wild-type enzyme, the differential enolization capabilities of D135N and D135A dehydratases suggest an additional role for this residue. We postulate that the switch from a concerted to stepwise dehydration mechanism observed in the aspartic acid variants is due to the loss of control over the glucosyl C5-C6 bond rotation in the active site.  相似文献   

12.
13.
Poulsen M  Oh DC  Clardy J  Currie CR 《PloS one》2011,6(2):e16763
Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.  相似文献   

14.
Methylaplysinopsin is a novel marine natural product that, after oral administration, prevented the effects of tetrabenazine in mice and rats. Methylaplysinopsin was a short-acting inhibitor of monoamine oxidase activity with greatest potency when serotonin was the substrate studied. The brain concentration of serotonin in the mouse was increased by methylaplysinopsin over the same time course as monoamine oxidase inhibition ex vivo. Methylaplysinopsin was also a weak inhibitor of the neuronal uptake of [3H]serotonin and a potentiator of the K+-induced release of [3H]serotonin from prelabeled synaptosomes. The predicted potentiation of serotonergic neurotransmission was supported by initial neurophysiological studies in an identified serotonergic pathway in the central nervous system of Aplysia. Two other studies on the pharmacology of marine natural products are reviewed. The majority of polyhalogenated monoterpenes isolated from red algae had central nervous system depressant properties. The exception is plocamadiene A, which caused, in mice, a reversible spastic paresis lasting up to 72 hours after oral administration. The severe muscle spasm was antagonized by diazepam. The final study discussed is the effect of a variety of marine natural products on the synthesis, neuronal uptake, and metabolism of GABA. Their selectivity is discussed with regard to the effects on metabolic respiration, and the correlation of neurochemical and neurophysiological effects on these marine substances.  相似文献   

15.
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant hosts. By carrying out metabolic engineering of three endogenous pathways that lead to the synthesis of TDP sugars in E. coli, we have greatly improved the intracellular levels of the common deoxysugar intermediate TDP‐4‐keto‐6‐deoxyglucose resulting in increased production of the heterologous sugars TDP‐L‐mycarose and TDP‐d ‐desosamine, both components of medically important polyketides. Bioconversion experiments carried out by feeding 6‐deoxyerythronolide B (6‐dEB) or 3‐α‐mycarosylerythronolide B (MEB) demonstrated that the genetically modified E. coli B strain was able to produce 60‐ and 25‐fold more erythromycin D (EryD) than the original strain K207‐3, respectively. Moreover, the additional knockout of the multidrug efflux pump AcrAB further improved the ability of the engineered strain to produce these glycosylated compounds. These results open the possibility of using E. coli as a generic host for the industrial scale production of glycosylated polyketides, and to combine the polyketide and deoxysugar combinatorial approaches with suitable glycosyltransferases to yield massive libraries of novel compounds with variations in both the aglycone and the tailoring sugars.  相似文献   

16.
17.
Major advances in our understanding of marine bacterial diversity have been gained through studies of bacterioplankton, the vast majority of which appear to be gram negative. Less effort has been devoted to studies of bacteria inhabiting marine sediments, yet there is evidence to suggest that gram-positive bacteria comprise a relatively large proportion of these communities. To further expand our understanding of the aerobic gram-positive bacteria present in tropical marine sediments, a culture-dependent approach was applied to sediments collected in the Republic of Palau from the intertidal zone to depths of 500 m. This investigation resulted in the isolation of 1,624 diverse gram-positive bacteria spanning 22 families, including many that appear to represent new taxa. Phylogenetic analysis of 189 representative isolates, based on 16S rRNA gene sequence data, indicated that 124 (65.6%) belonged to the class Actinobacteria while the remaining 65 (34.4%) were members of the class Bacilli. Using a sequence identity value of >/=98%, the 189 isolates grouped into 78 operational taxonomic units, of which 29 (37.2%) are likely to represent new taxa. The high degree of phylogenetic novelty observed during this study highlights the fact that a great deal remains to be learned about the diversity of gram-positive bacteria in marine sediments.  相似文献   

18.
采用海绵组织离散、细胞分离的方法,对繁茂膜海绵细胞进行纯化、胞内微生物DNA提取,构建了繁茂膜海绵细胞内微生物的16SrDNA克隆,对其遗传多样性进行了分析,发现海绵细胞内微生物16SrDNA序列主要归类于紫硫细菌门(Proteobacteria)中的α-亚门、γ-亚门和浮霉菌门(Planctomycetes)等类群。与研磨直接提取海绵组织DNA所得海绵组织中总微生物多样性相比,海绵细胞内存在丰富的浮霉菌(23%),说明浮霉菌主要存在于海绵细胞胞内。  相似文献   

19.
This review highlights recent findings of our group on bioactive marine natural products isolated from marine sponges and marine derived fungi. The activated chemical defence of the Mediterranean sponge Aplysina aerophoba is introduced as an example of a dynamic response of marine sponges to wounding. Following tissue disrupture preformed brominated isoxazoline alkaloids are enzymatically cleaved and thereby give rise to aeroplysinin-1 which is believed to protect sponges from invasion of pathogenic bacteria. A preliminary characterization of the membrane bound enzyme(s) involved in the cleavage reaction is presented. Bromotyrosine derived, oxime group bearing peptides, the so called bastadins, obtained from the sponge Ianthella basta and some of their synthetic derivatives were shown to exhibit pronounced antifouling activity against larvae of the barnacle Balanus improvisus. The antifouling activity could be traced to the oxime group as an important pharmacophore that was also found to be present in other sponge derived natural products exhibiting antifouling activity. Marine derived fungi that reside within invertebrates such as sponges or inside Mangrove plants are emerging as a new source of bioactive metabolites as demonstrated for Aspergillus ustus and Alternaria sp. that were isolated from the sponge Suberites domuncula or from the Mangrove plant Sonneratia alba, respectively. The former fungus yielded new moderately cytotoxic sesquiterpenoids of the drimane type whereas the latter was found to produce polyketides such as alternariol that exhibited strong and selective inhibitory activity against several protein kinases, for instance Aurora A and B which are targets for anticancer chemotherapy.  相似文献   

20.
We have conducted a preliminary phylogenetic survey of ammonia-oxidizing beta-proteobacteria, using 16S rRNA gene libraries prepared by selective PCR and DNA from acid and neutral soils and polluted and nonpolluted marine sediments. Enrichment cultures were established from samples and analyzed by PCR. Analysis of 111 partial sequences of c. 300 bases revealed that the environmental sequences formed seven clusters, four of which are novel, within the phylogenetic radiation defined by cultured autotrophic ammonia oxidizers. Longer sequences from 13 cluster representatives support their phylogenetic positions relative to cultured taxa. These data suggest that known taxa may not be representative of the ammonia-oxidizing beta-proteobacteria in our samples. Our data provide further evidence that molecular and culture-based enrichment methods can select for different community members. Most enrichments contained novel Nitrosomonas-like sequences whereas novel Nitrosospira-like sequences were more common from gene libraries of soils and marine sediments. This is the first evidence for the occurrence of Nitrosospira-like strains in marine samples. Clear differences between the sequences of soil and marine sediment libraries were detected. Comparison of 16S rRNA sequences from polluted and nonpolluted sediments provided no strong evidence that the community composition was determined by the degree of pollution. Soil clone sequences fell into four clusters, each containing sequences from acid and neutral soils in varying proportions. Our data suggest that some related strains may be present in both samples, but further work is needed to resolve whether there is selection due to pH for particular sequence types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号