首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) plays a crucial role in the last step of the synthesis of estrogens. A detailed kinetic study demonstrated that the enzyme shows about 240 fold higher specificity towards estrone reduction than estradiol oxidation at physiological pH using tri-phosphate cofactors. The kcat/Km values are 96 +/- 10 and 0.4 +/- 0.1 s-1 (microM)-1 respectively for the above two reactions. However, it has been shown that this difference is closely linked to the use of NADPH and NADP cofactors. A binding study using equilibrium dialysis indicated similar KD (equilibrium dissociation constant) of 11 +/- 1 and 4.7 +/- 0.9 microM for estrone and estradiol, respectively. The binding affinity of 17beta-HSD1 to estrone was significantly increased with a KD of 1.6 +/- 0.2 microM in the presence of NADP, the latter used as an analogue of the NADPH. The results of binding studies agree with the steady-state kinetics, which showed that the Km of estrone is 12-fold lower when using NADPH as a cofactor than when using NADH. These results strongly suggest that the cofactor plays a crucial role in the stimulation of the specificity for estrogen reduction.  相似文献   

4.
The kinetic mechanism of homogeneous human glutamic-gamma-semialdehyde dehydrogenase (EC 1.5.1.12) with glutamic gamma-semialdehyde as substrate was determined by initial-velocity, product-inhibition and dead-end-inhibition studies to be compulsory ordered with rapid interconversion of the ternary complexes (Theorell-Chance). Product-inhibition studies with NADH gave a competitive pattern versus varied NAD+ concentrations and a non-competitive pattern versus varied glutamic gamma-semialdehyde concentrations, whereas those with glutamate gave a competitive pattern versus varied glutamic gamma-semialdehyde concentrations and a non-competitive pattern versus varied NAD+ concentrations. The order of substrate binding and release was determined by dead-end-inhibition studies with ADP-ribose and L-proline as the inhibitors and shown to be: NAD+ binds to the enzyme first, followed by glutamic gamma-semialdehyde, with glutamic acid being released before NADH. The Kia and Kib values were 15 +/- 7 microM and 12.5 microM respectively, and the Ka and Kb values were 374 +/- 40 microM and 316 +/- 36 microM respectively; the maximal velocity V was 70 +/- 5 mumol of NADH/min per mg of enzyme. Both NADH and glutamate were product inhibitors, with Ki values of 63 microM and 15,200 microM respectively. NADH release from the enzyme may be the rate-limiting step for the overall reaction.  相似文献   

5.
Graziano V  McGrath WJ  Yang L  Mangel WF 《Biochemistry》2006,45(49):14632-14641
The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, KD, have varied more than 65,0000-fold, from <1 nM to more than 200 microM. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimer equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded KD values of 5.8 +/- 0.8 microM (obtained from the entire scattering curve), 6.5 +/- 2.2 microM (obtained from the radii of gyration), and 6.8 +/- 1.5 microM (obtained from the forward scattering). The KD from chemical cross-linking was 12.7 +/- 1.1 microM, and from enzyme kinetics, it was 5.2 +/- 0.4 microM. While each of these three techniques can present different, potential limitations, they all yielded similar KD values.  相似文献   

6.
The dissociation constant for the complex of rhodanese and Cibacron Blue, determined by analytical affinity chromatography using rhodanese immobilized on controlled-pore glass (CPG) beads (200 nm pore diameter) and aminohexyl-Cibacron Blue, was 44 microM which agreed well with the kinetic inhibition constant, suggesting that the dye binds at or near the active site of this enzyme. Formation of a binary complex of the dye and lactate dehydrogenase (LDH) was also characterized by direct chromatography of LDH on CPG/immobilized Cibacron Blue (KD = 0.29 microM). The binary complex formed between LDH and NADH was characterized by analytical affinity chromatography using both CPG/immobilized LDH and immobilized Cibacron Blue. Since the dye competes with NADH in binding to the active site of LDH, competitive elution chromatography using the immobilized dye allows determination of the dissociation constant of the soluble LDH.NADH complex. Agreement between the dissociation constants determined by direct chromatography of NADH on immobilized LDH (KD = 1.4 microM) and that determined for the soluble complex (KD = 2.4 microM) indicates that immobilization of LDH did not affect the interaction. Formation of various binary, ternary and quaternary complexes of bovine liver glutamate dehydrogenase (GDH) with glutamate, NADPH, NADH, and ADP was also investigated using immobilized GDH. This approach allows characterization of the enzyme/ligand interactions without the complicating effect of enzyme self-association. The affinity for NADPH is considerably greater in the ternary complex (including glutamate) as compared to the binary complex (0.38 microM vs 22 microM); however, occupancy of the regulatory site by ADP greatly reduces the affinity in both complexes (6.4 microM and 43 microM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Ecdysone 3-epimerase was partially purified by ammonium sulfate fractionation from the 100,000 g supernate of Manduca sexta midguts. The enzyme converts ecdysone and 20-hydroxyecdysone to their respective 3-epimers, requires NADH or NADPH and O2 for this reaction, and has the following kinetic parameters: for ecdysone, Km = 17.0 +/- 1.4 microM, Vmax = 110.6 +/- 14.6 pmol min-1 mg-1; for 20-hydroxyecdysone, Km = 47.3 +/- 7.5 microM, Vmax = 131.0 +/- 3.5 pmol min-1 mg-1: for NADPH, Km = 85.4 +/- 10.6 microM; for NADH, Km = 51.3 +/- 1.3 microM. The reaction is irreversible and can be inhibited by various ecdysteroids.  相似文献   

9.
The steady-state kinetic properties of partially purified chicken liver sorbitol dehydrogenase (SDH) were determined spectrophotometrically at 25 degrees C, in 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer, pH 8.0. In the sorbitol-to-fructose direction, analysis was based on initial rate data obtained at [NAD(+)](o)=0.1-0.4 mM and [sorbitol](o)=1.25-10 mM. The reverse process was analyzed by recording progress curves for NADH consumption, starting with [NADH](o)=0.2 mM and [fructose](o)=66.7-267 mM. The kinetics conformed to an ordered sequential model, with the cofactors adding first. The steady-state parameters in the forward direction, K(NAD(+)), K(iNAD(+)) and K(sorbitol), were found to be 210+/-62 muM, 220+/-69 microM and 3.2+/-0.54 mM, respectively. The corresponding parameters in the reverse direction were K(NADH)=240+/-58 microM, K(iNADH)=10+/-2.8 microM and K(fructose)=1000+/-140 mM. The results indicated a close parallelism with human SDH, yet up to 40-fold differences were observed when compared to related reports on other mammalian species. The structural and adaptive bases of the variation in substrate and cofactor affinities need to be accounted for.  相似文献   

10.
A simple, selective and sensitive method for the detection of NADH and ethanol is presented. Self-assembled monolayers (SAMs) of mercaptopyrimidine (MPM) and their derivatives, thiocytosine (TC) and 4,6-diamino-2-mercaptopyrimidine (DMP) on gold (Au) electrode are used for the voltammetric detection of NADH and ethanol in neutral aqueous solution. A decrease of 200-300 mV in the overpotential associated with an observable increase in the peak current was obtained for the oxidation of NADH on MPM and TC monolayer-modified electrodes without any redox mediator. The facilitated electron transfer for the oxidation of NADH at the TC monolayer is ascribed to the existence of stable cationic p-quinonoid form of TC. The electrode modified with DMP monolayer could not exhibit stable response for NADH owing to the fouling of electrode surface. The MPM and TC monolayer-modified electrodes show high selectivity and excellent sensitivity (MPM: 0.633+/-0.005 microA cm(-2) microM(-1); TC: 0.658+/-0.008 microA cm(-2) microM(-1)) towards NADH with detection limit (3sigma) of 2.5 and 0.5 microM, respectively. Presence of large excess of ascorbate (AA) does not interfere the detection of NADH and the monolayer-modified electrode shows individual voltammetric peaks for AA and NADH. Voltammetric sensing of ethanol using alcohol dehydrogenase on MPM and TC monolayer-modified electrode is successfully demonstrated and these electrode can detect as low as 0.5 mM ethanol in neutral pH. The sensitivity of the MPM and TC monolayer-modified electrodes toward ethanol was found to be 3.24+/-0.03 and 3.435+/-0.04 microA cm(-2) mM(-1), respectively.  相似文献   

11.
The human [Glu1]-plasminogen carbohydrate isozymes, plasminogen type I (Pg 1) and plasminogen type II (Pg 2), were separated by chromatography and studied in cell binding experiments at 4 degrees C with primary cultures of rat hepatocytes and rat C6 glioma cells. In both cell systems, Pg 1 and Pg 2 bound to an equivalent number of receptors, apparently representing the same population of surface molecules. The affinity for Pg 2 was slightly higher. With hepatocytes, the KD for Pg 1 was 3.2 +/- 0.2 microM, and the KD for Pg 2 was 1.9 +/- 0.1 microM, as determined from Scatchard transformations of the binding isotherms. The Bmax was approximately the same for both isozymes. With C6 cells, the KD for Pg 1 was 2.2 +/- 0.1 microM vs. 1.5 +/- 0.2 microM for Pg 2. Again, the Bmax was similar with both isozymes. 125I-Pg 1 and 125I-Pg 2 were displaced from specific binding sites by either nonradiolabeled isozyme. The KI for Pg 2 was slightly lower than the KI for Pg 1 with hepatocytes (0.9 vs. 1.3 microM) and with C6 cells (0.6 vs. 1.1 microM). No displacement was detected with miniplasminogen at concentrations up to 5.0 microM. Activation of Pg 1 and Pg 2 by recombinant two-chain tissue-plasminogen activator (rt-PA) was enhanced by hepatocyte cultures. The enhancing effect was greater with Pg 2. Hepatocyte cultures did not affect the activation of miniplasminogen by rt-PA or the activation of plasminogen by streptokinase. Unlike the hepatocytes, C6 cells did not enhance the activation of plasminogen by rt-PA or streptokinase; however, plasmin generated in the presence of C6 cells reacted less readily with alpha 2-antiplasmin.  相似文献   

12.
1L-Inositol 1-phosphate synthase (EC 5.5.1.4) devoid of bound NAD+ was isolated from mature pollen of Lilium longiflorum ( Easter lily ). The enzyme has a molecular weight of 157,000 +/- 15,000 and a subunit weight of 61,000 +/- 5,000. Kinetic studies of the uninhibited reaction and of inhibition by 2-deoxy-D-glucose 6-phosphate and NADH show the reaction to be ordered sequential with NAD+ adding first. The Michaelis constants for NAD+ and D-glucose 6-phosphate are 2.4 and 65 microM, respectively. The Ki for 2-deoxy-D-glucose 6-phosphate was 8.7 and 2.0 microM, respectively, when D-glucose 6-phosphate or NAD+ was varied. The Ki for NADH and variable NAD+ was 4.7 microM and, for NADH and variable D-glucose 6-phosphate, 3.9 microM.  相似文献   

13.
14.
Defective complex I activity has been linked to Parkinson's disease and Huntington's disease, but little is known of the regional distribution of this enzyme in the brain. We have developed a quantitative autoradiographic assay using [3H]dihydrorotenone ([3H]DHR) to label and localize complex I in brain tissue sections. Binding was specific and saturable and in the cerebellar molecular layer had a KD of 11.5 +/- 1.3 nM and a Bmax of 11.0 +/- 0.4 nCi/mg of tissue. Unlabeled rotenone and 1-methyl-4-phenylpyridinium ion competed effectively for DHR binding sites. Binding was markedly enhanced by 100 microM NADH. The distribution of complex I in brain, as revealed by DHR autoradiography, is unique but somewhat similar to that of cytochrome oxidase (complex IV). This assay may provide new insight into the roles of complex I in brain function and neurodegeneration.  相似文献   

15.
The binding of NADH to porcine mitochondrial malate dehydrogenase in phosphate buffer at pH 7.5 has been studied by equilibrium and kinetic methods. Hyperbolic binding was obtained by fluorimetric titration of enzyme with NADH, in the presence or absence of hydroxymalonate. Identical results were obtained for titrations of NADH with enzyme in the presence or absence of hydroxymalonate, measured either by fluorescence emission intensity or by the product of intensity and anisotropy. The equilibrium constant for NADH dissociation was 3.8 +/- 0.2 micrometers, over a 23-fold range of enzyme concentration, and the value in the presence of saturating hydroxymalonate was 0.33 +/- 0.02 micrometer over a 10-fold range of enzyme concentration. The rate constant for NADH binding to the enzyme in the presence of hydroxymalonate was 3.6 X 10(7) M-1 s-1, while the value for dissociation from the ternary complex was 30 +/- 1 s-1. No limiting binding rate was obtained at pseudo-first order rate constants as high as 200 s-1, and the rate curve for dissociation was a single exponential for at least 98% of the amplitude. In addition to demonstrating that the binding sites are independent and indistinguishable, the absence of effects of enzyme concentration on the KD value indicates that NADH binds with equal affinity to monomeric and dimeric enzyme forms.  相似文献   

16.
Kinetic properties of purified 5-carboxymethyl-2-hydroxymuconate semialdehyde (CHMSA) dehydrogenase (EC 1.2.1.-) in the 4-hydroxyphenylacetate meta-cleavage pathway from Escherichia coli have been studied. The temperature--activity relationship for the enzyme from 27 to 45 degrees C showed an Arrhenius plot with an inflexion at 36 degrees C. When 5-carboxymethyl-2-hydroxymuconic semialdehyde and NAD were used as variable substrates, the double reciprocal plots were all linear and the lines intersected at one point below the horizontal axis, suggesting that a sequential mechanism is operating. From the replots of intercepts and slopes against reciprocal substrate concentrations were calculated Km (CHMSA) = 9.0 +/- 1.02 microM, Km (NAD) = 29.1 +/- 4.65 microM and the value for the dissociation constant of enzyme--NAD complex = 6.3 +/- 1.21 microM. ATP and the product of the reaction (NADH) acted as competitive inhibitors of the enzyme with respect to NAD. Apparent Ki values, estimated from Dixon plots, were 25.0 +/- 3.5 and 88.0 +/- 22.1 microM for NADH and ATP, respectively.  相似文献   

17.
1. Isolated chromaffin cells from bovine adrenal medulla were used to study glucose transport in a homogeneous neural tissue. 2. The affinity of glucose transporters was 1.20 +/- 0.52 mM by the infinite-cis technique and 1.02 +/- 0.09 mM by the direct transport experiments. 3. The affinity for 2-deoxyglucose of these transporters was 2.3 mM. 4. The glucose transporters, quantified by [3H]cytochalasin B binding, were 419,532 +/- 120,740 receptors/cell, which corresponds to about 7.2 +/- 2 pmol/mg of protein, with KD = 0.1 microM. 5. High-affinity insulin receptors with KD = 3.95 nM were present at a density of 68,400 +/- 7500 per cell. 6. Insulin and secretagogues increased glucose transport, raising the transporter number at the plasma membrane without changes in the affinity.  相似文献   

18.
Soybean nodule xanthine dehydrogenase: a kinetic study   总被引:1,自引:0,他引:1  
Xanthine dehydrogenase was purified from soybean nodules and the kinetic properties were studied at pH 7.5. Km values of 5.0 +/- 0.6 and 12.5 +/- 2.5 microM were obtained for xanthine and NAD+, respectively. The pattern of substrate dependence suggested a Ping-Pong mechanism. Reaction with hypoxanthine gave Km's of 52 +/- 3 and 20 +/- 2.5 microM for hypoxanthine and NAD+, respectively. The Vmax for this reaction was twice that for the xanthine-dependent reaction. The pH dependence of Vmax gave a pKa of 7.6 +/- 0.1 for either xanthine or hypoxanthine oxidation. In addition the Km for xanthine had a pKa of 7.5 consistent with the protonated form of xanthine being the true substrate. Km for hypoxanthine varied only 2.5-fold between pH 6 and 10.7. Product inhibition studies were carried out with urate and NADH. Both products gave mixed inhibition with respect to both substrates. Xanthine dehydrogenase was able to use APAD+ as an electron acceptor for xanthine oxidation, with a Km at pH 7.5 of 21.2 +/- 2.5 microM and Vmax the same as that obtained with NAD+. Reduction of APAD+ by NADH was also catalyzed by xanthine dehydrogenase with a Km of 102 +/- 15 microM; Vmax was approximately 2.5 times that for the xanthine-dependent reaction, and was independent of pH between 6 and 9. Reaction with group-specific reagents indicated the possibility of an essential histidyl group. A thiol-modifying reagent did not cause inactivation of the enzyme. A role for the histidyl side chain in catalysis is proposed.  相似文献   

19.
3-Hydroxy-3-methyl-1-thionoglutaryl-coenzyme A, a dithioester analog of 3-hydroxy-3-methylglutaryl-CoA, has been enzymatically synthesized using the HMG-CoA synthase catalyzed condensation of acetyl-CoA with 3-oxo-1-thionobutyryl-CoA. HMGdithio-CoA is a potent inhibitor of Pseudomonas mevalonii HMG-CoA reductase. Inhibition was mainly competitive with respect to HMG-CoA with a Kis of 0.086 +/- .01 microM and noncompetitive with respect to NADH with a Kis of 3.7 +/- 1.5 microM and a Kii of 0.65 +/- .05 microM in the presence of 110 microM (R.S)-HMG-CoA.  相似文献   

20.
Purified cytoplasmic and membrane-bound lactate dehydrogenases (LDH) from white muscle of skate were characterized, Km for pyruvate and NADH for purified LDH were 150 +/- 16 and 29 +/- 7 microM, and for membrane-bound LDH were 185 +/- 22 and 7.5 +/- 1.5 microM, respectively. The membrane-bound enzyme was not inhibited by high pyruvate concentration (up to 20 mM) in contrast to purified LDH. Part of membrane-bound LDH was released by incubation in solutions with a high level of KCl (up to 1 M) or at alkaline pH. The inactivation rate during trypsin digestion for solubilized LDH was 2-3-fold higher than that for the membrane-bound enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号