首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allelic exclusion of immune receptor genes (and molecules) is incompletely understood. With regard to TCRalphabeta lineage T cells, exclusion at the tcr-b, but not tcr-a, locus seems to be strictly controlled at the locus rearrangement level. Consequently, while nearly all developing TCRalphabeta thymocytes express a single TCRbeta protein, many thymocytes rearrange and express two different TCRalpha chains and, thus, display two alphabetaTCRs on the cell surface. Of interest, the number of such dual TCR-expressing cells is appreciably lower among the mature T cells. To understand the details of TCR chain regulation at various stages of T cell development, we analyzed TCR expression in mice transgenic for two rearranged alphabetaTCR. We discovered that in such TCR double-transgenic (TCRdTg) mice peripheral T cells were functionally monospecific. Molecularly, this monospecificity was due to TCRalpha exclusion: one transgenic TCRalpha protein was selectively down-regulated from the thymocyte and T cell surface. In searching for the mechanism(s) governing this selective TCRalpha down-regulation, we present evidence for the role of protein tyrosine kinase signaling and coreceptor involvement. This mechanism may be operating in normal thymocytes.  相似文献   

2.
Editing autoreactive TCR enables efficient positive selection   总被引:2,自引:0,他引:2  
Allelic exclusion is inefficient at the TCRalpha locus, allowing a sizeable portion of T cells to carry two functional TCRs. The potential danger of dual TCR expression is a rescue of autoreactive TCRs during selection in the thymus and subsequent development of autoimmunity. In this study, we examine the reason(s) for replacing an autoreactive TCR and for allowing the survival of cells carrying two TCRs. We compared development of TCR transgenic CD4(+)CD8(-) thymocytes in the presence or absence of MHC class II autoantigen that does not induce deletion of thymocytes. Contrary to the expected negative effect of the presence of autoantigen, approximately 100% more CD4(+)CD8(-) thymocytes were found in the presence of MHC class II autoantigen than in the neutral background. A further increase in the strength of autoantigenic signal via expression of a human CD4 transgene led to an additional increase in the numbers of CD4(+)CD8(-) thymocytes. Thus, editing autoreactive TCR results in more efficient positive selection, and this may be both a reason and a reward for risking autoimmunity.  相似文献   

3.
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.  相似文献   

4.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

5.
CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3epsilon-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.  相似文献   

6.
Thymic selection is controlled in part by the avidity of the interaction between thymocytes and APCs. In agreement, the selective outcome can be modulated by altering the expression levels of selecting ligands on APCs. Here we test the converse proposition, i. e., whether changing TCR levels on thymocytes can alter the selective outcome. To this end, we have generated mice in which all thymocytes express two transgenic TCRs simultaneously (dual TCR-expressing (DTE) mice), the class I-restricted HY TCR and the class II-restricted AND TCR. Due to mutual dilution, surface expression levels of the two individual transgenic TCRs are diminished in DTE relative to single TCR-expressing mice. We find that thymic selection is highly sensitive to these reductions in TCR surface expression. Positive selection mediated by the AND and HY TCRs is severely impaired or abolished, respectively. Negative selection of the HY TCR in male DTE mice is also partly blocked, leading to the appearance of significant numbers of double positive thymocytes. Also, in the periphery of male, but not female, DTE mice, substantial numbers of single positive CD8bright cells accumulate, which are positively selected in the thymus but by a highly inefficient hemopoietic cell-dependent process. Overall our results favor the interpretation that the outcome of thymic selection is not determined solely by avidity and the resulting signal intensity, but is also constrained by other factors such as the nature of the ligand and/or its presentation by different subsets of APCs.  相似文献   

7.
The thymus imparts a developmental imprint upon T cells, screening beneficial and self-tolerant T cell receptor (TCR) specificities. Cortical thymic epithelial cells (CTEC) present self-peptide self-MHC complexes to thymocytes, positively selecting those with functional TCRs. Importantly, CTEC generate diverse self-peptides through highly specific peptide processing. The array of peptides utilized for positive selection appears to play a key role in shaping TCR repertoire and influencing T cell functionality. Whilst self-peptide diversity influences T cell development, the precise source of proteins generating such self-peptide arrays remains unknown, the abundance of apoptotic thymocytes failing thymic selection may provide such a pool of self-proteins. In relation to this notion, whilst it has been previously demonstrated that CTEC expression of the endocytic receptor CD205 facilitates binding and uptake of apoptotic thymocytes, the possible role of CD205 during intrathymic T cell development has not been studied. Here, we directly address the role of CD205 in normal thymocyte development and selection. Through analysis of both polyclonal and monoclonal transgenic TCR T-cell development in the context of CD205 deficiency, we demonstrate that CD205 does not play an overt role in T cell development or selection.  相似文献   

8.
Some MHC class II genes provide dominant resistance to certain autoimmune diseases via mechanisms that remain unclear. We have shown that thymocytes bearing a highly diabetogenic, I-Ag7-restricted beta-cell-reactive TCR (4.1-TCR) undergo negative selection in diabetes-resistant H-2g7/x mice by engaging several different antidiabetogenic MHC class II molecules on thymic (but not peripheral) hemopoietic cells, independently of endogenous superantigens. Here we have investigated 1) whether this TCR can also engage protective MHC class II molecules (I-Ab) on cortical thymic epithelial cells in the absence of diabetogenic (I-Ag7) molecules, and 2) whether deletion of 4.1-CD4+ thymocytes in I-Ab-expressing mice might result from the ability of I-Ab molecules to present the target beta-cell autoantigen of the 4.1-TCR. We show that, unlike I-Ag7 molecules, I-Ab molecules can restrict neither the positive selection of 4.1-CD4+ thymocytes in the thymic cortex nor the presentation of their target autoantigen in the periphery. Deletion of 4.1-CD4+ thymocytes by I-Ab molecules in the thymic medulla, however, is a peptide-specific process, since it can be triggered by hemopoietic cells expressing heterogeneous peptide/I-Ab complexes, but not by hemopoietic cells expressing single peptide/I-Ab complexes. Thus, unlike MHC-autoreactive or alloreactive TCRs, which can engage deleting MHC molecules in the thymic cortex, thymic medulla, and peripheral APCs, the 4.1-TCR can only engage deleting MHC molecules (I-Ab) in the thymic medulla. We therefore conclude that this form of MHC-induced protection from diabetes is based on the presentation of an anatomically restricted, nonautoantigenic peptide to highly diabetogenic thymocytes.  相似文献   

9.
The T cell repertoire is shaped by the processes of positive and negative selection. During development, the TCR binds self peptide-MHC complexes in the thymus, and the kinetics of this interaction are thought to determine the thymocyte's fate. For development of CD8(+) T cells, the data supporting such a model have been obtained using fetal thymic organ culture. To confirm the fidelity of this model in vivo, we studied development of OT-I TCR-transgenic mice that expressed different individual K(b) binding peptides in thymic epithelial cells under the control of the human keratin 14 promoter. We used a system that allowed TAP-independent expression of the peptide-MHC complex, such that the ability of given peptides to restore positive selection in TAP(o) mice could be assessed. We found that transgenic expression of a TCR antagonist peptide (E1) in vivo efficiently restored positive selection of OT-I T cells in TAP(o) mice. An unrelated transgenic peptide (SIY) did not restore selection of OT-I T cells, nor did the E1-transgenic peptide restore selection of an unrelated receptor (2C), showing that positive selection is peptide specific in vivo, as observed in organ cultures. Neither E1 nor SIY transgenes increased the polyclonal CD8 T cell repertoire size in non-TCR-transgenic animals, arguing that single class I binding peptides do not detectably affect the size of the CD8 T cell repertoire when expressed at low levels. We also observed that OT-I T cells selected in TAP(o)-E1 mice were functional in their response to Ag; however, there was a lag in this response, suggesting that the affinity of the TCR interaction with MHC-self peptide can result in fine-tuning of the T cell response.  相似文献   

10.
11.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

12.
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5.Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10.Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.  相似文献   

13.
Remarkably normal cellular immune function, along with specific T-cell tolerance to highly disparate xenogeneic donors, can be achieved by grafting fetal pig thymus (FP THY) tissue to T and NK cell-depleted, thymectomized (ATX) mice. Porcine MHC can mediate positive selection of mouse CD4+ T-cells with a mouse MHC-restricted TCR in FP THY-grafted, T- and NK cell-depleted, ATX TCR-transgenic "AND" mice. However, functional studies were not performed on transgenic mouse T-cells selected in a FP THY graft. We have now performed further studies to confirm the ability of porcine MHC to mediate the positive selection of mouse T-cells with a mouse MHC-restricted TCR, and to exclude the possibility that the maturation of mouse T-cells with a mouse MHC-restricted TCR in FP THY grafts in ATX "AND" mice is a special case. For this purpose, TCR-transgenic mice with an unrelated transgenic TCR ["3A9", specific for hen egg lysozyme (HEL) peptide 46-61 presented by I-Ak] were employed. Similar to FP THY-grafted ATX "AND" mice, large numbers of mouse CD4 single positive thymocytes expressing the transgenic TCR (Vbeta8.2) and expressing a mature phenotype (Qa-2high and heat stable antigen, HSAlow) were detected in FP THY grafts. Porcine thymus grafting led to a high level of peripheral repopulation with mouse naive-type (CD44low CD45RBhigh CD62Lhigh) CD4+ cells expressing the transgenic TCR in T and NK cell-depleted ATX "3A9" mice, regardless of whether the recipients had a positive selecting or a non-selecting, class II deficient MHC background. The mouse CD4+ T-cells expressing the "3A9" TCR showed efficient primary proliferative responses to the protein antigen (HEL) when it was presented by mouse class II+ antigen presenting cells (APC) in vitro. These results, collectively, support the general conclusion that discordant xenogeneic porcine MHC can mediate positive selection of mouse T-cells with mouse MHC-restricted TCR. This study has implications for the potential clinical use of xenogeneic thymus transplantation to reconstitute cellular immunity in the setting of thymic insufficiency or thymectomy, and hence for its applicability to the induction of xenograft tolerance and in the treatment of immunodeficiency diseases.  相似文献   

14.
CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.  相似文献   

15.
Current data indicate that CD5 functions as an inhibitor of TCR signal transduction. Consistent with this role, thymocyte selection in TCR transgenic/CD5(-/-) mice is altered in a manner suggestive of enhanced TCR signaling. However, the impact of CD5 deletion on thymocyte selection varies depending on the transgenic TCR analyzed, ranging from a slight to a marked shift from positive toward negative selection. An explanation for the variable effect of CD5 on selection is suggested by the observation that CD5 surface expression is regulated by TCR signal intensity during development and CD5 surface levels on mature thymocytes and T cells parallel the avidity of the positively selecting TCR/MHC/ligand interaction. In this study, we generated mice that overexpress CD5 during thymocyte development (CD5-tg), and then examined the effect of CD5 overexpression or CD5 deletion (CD5(-/-)) on selection of thymocytes that express the same TCR transgenes. The results demonstrate that the effect on thymocyte selection of altering CD5 expression depends on the avidity of the selecting interaction and, consequently, the level of basal (endogenous) CD5 surface expression. Substitution of endogenous CD5 with a transgene encoding a truncated form of the protein failed to rescue the CD5(-/-) phenotype, demonstrating that the cytoplasmic domain of CD5 is required for its inhibitory function. Together, these results indicate that inducible regulation of CD5 surface expression during thymocyte selection functions to fine tune the TCR signaling response.  相似文献   

16.
Exclusion and inclusion of alpha and beta T cell receptor alleles.   总被引:20,自引:0,他引:20  
P Borgulya  H Kishi  Y Uematsu  H von Boehmer 《Cell》1992,69(3):529-537
Exclusion and inclusion of T cell receptor (TCR) genes were analyzed in alpha beta TCR transgenic mice. Both transgenes are expressed unusually early on the surface of CD4-8-, HSA+, IL-2R- thymocytes. These progenitor cells give rise to progeny, which at the single-cell level contains endogenous alpha but not beta TCR-RNA as well as protein, in addition to products encoded by the transgenes. Thus, the surface expression of an alpha beta TCR does not prevent further alpha TCR rearrangement in immature thymocytes that still transcribe RAG-1 and RAG-2 genes. Reduced levels of RAG-1 and RAG-2 RNA are detectable only in CD4+8+ TCR high cells, which result from positive selection in the thymus. The results suggest that a developing T cell may try different alpha beta TCRs for binding to thymic MHC ligands, and that recombination at the alpha locus ceases only after positive selection.  相似文献   

17.
The Tec family tyrosine kinase Itk is critical for efficient signaling downstream of the TCR. Biochemically, Itk is directly phosphorylated and activated by Lck. Subsequently, Itk activates phospholipase C-gamma1, leading to calcium mobilization and extracellular signal-regulated kinase/mitogen-activated protein kinase activation. These observations suggested that Itk might play an important role in positive selection and CD4/CD8 lineage commitment during T cell development in the thymus. To test this, we crossed Itk-deficient mice to three lines of TCR transgenics and analyzed progeny on three different MHC backgrounds. Analysis of these mice revealed that fewer TCR transgenic T cells develop in the absence of Itk. In addition, examination of multiple T cell development markers indicates that multiple stages of positive selection are affected by the absence of Itk, but the T cells that do develop appear normal. In contrast to the defects in positive selection, CD4/CD8 lineage commitment seems to be intact in all the TCR transgenic itk(-/-) lines tested. Overall, these data indicate that altering TCR signals by the removal of Itk does not affect the appropriate differentiation of thymocytes based on their MHC specificity, but does impact the efficiency with which thymocytes complete their maturation process.  相似文献   

18.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

19.
We have tested the peptide specificity of positive selection using three transgenic alphabetaTCRs, originally selected on class II MHC (A(b)) covalently bound with one peptide Ealpha (52-68) (Ep). The transgenic TCR specific for the cytochrome c-derived (43-58) peptide was selected on A(b) bound with different arrays of endogenous peptides or the analogue of Ep covalently bound to A(b), but not on the original A(b)Ep complex. In contrast, transgenic TCRs specific for two different analogues of the Ep peptide and A(b) did not mature as CD4(+) T cells in various thymic environments, including the A(b)EpIi(-) mice. These results show that TCRs can be promiscuous or specific for the selecting MHC/peptide complex, and suggest that in mice described in this study transgenic expression of the TCR changes the original requirements for the positively selecting MHC/peptide complex. Future studies will determine whether the latter phenomenon is general or specific for this system.  相似文献   

20.
Activation of the Ras small GTP-binding protein is necessary for normal T cell development and function. However, it is unknown which Ras GTPase-activating proteins (RasGAPs) inactivate Ras in T cells. We used a T cell-specific RASA1-deficient mouse model to investigate the role of the p120 RasGAP (RASA1) in T cells. Death of CD4(+)CD8(+) double-positive thymocytes was increased in RASA1-deficient mice. Despite this finding, on an MHC class II-restricted TCR transgenic background, evidence was obtained for increased positive selection of thymocytes associated with augmented activation of the Ras-MAPK pathway. In the periphery, RASA1 was found to be dispensable as a regulator of Ras-MAPK activation and T cell functional responses induced by full agonist peptides. However, numbers of naive T cells were substantially reduced in RASA1-deficient mice. Loss of naive T cells in the absence of RASA1 could be attributed in part to impaired responsiveness to the IL-7 prosurvival cytokine. These findings reveal an important role for RASA1 as a regulator of double-positive survival and positive selection in the thymus as well as naive T cell survival in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号