首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to expand the recognition code by hairpin polyamides to include DNA sequences of the type 5'-CWWC-3' two polyamides, PyPyPyPy-(R)(H2N)gamma-ImPyPyIm-beta-Dp (1) and PyPyPyPy-(R)(H2N)gamma-ImPy-beta-Im-beta-Dp (2) were synthesized which have in common an Py/Im pair in the terminal position for targeting C x G but differ with respect to internal placement of a beta-alanine residue. The equilibrium association constants (Ka) were determined at four DNA sites which differ at a single common position, 5'-TNTACA-3' (N = T, A, G, C). Quantitative DNase I footprint titration experiments reveal that the eight-ring hairpin PyPyPyPy-(R)(H2N)gamma-ImPyPyIm-beta-Dp (1) binds the four binding sites with similar affinities, Ka = 1.3-1.9 x 10(10) M(-1) indicating that there is no preference for the position N. In contrast, a redesigned polyamide PyPyPyPy-(R)(H2N)gamma-ImPy-beta-Im-beta-Dp (2) that places an internal flexible aliphatic beta-alanine to the 5'-side of a key imidazole group bound the match site 5'-TCTACA-3' with high affinity and good sequence discrimination (Ka(match) = 4.9 x 10(10) M(-1) and the single base pair mismatch sites with 5- to 25-fold lower affinity). These results expand the repertoire of sequences targetable by hairpins and emphasize the importance of beta-alanine as a key element for minor groove recognition.  相似文献   

2.
Crescent-shaped synthetic ligands containing aromatic amino acids have been designed for specific recognition of predetermined DNA sequences in the minor groove of DNA. Simple rules have been developed that relate the side-by-side pairings of Imidazole (Im) and Pyrrole (Py) amino acids to their predicted target DNA sequences. We report here thermodynamic characterization of the DNA-binding properties of the six-ring hairpin polyamide, ImImPy-gamma-PyPyPy-beta-Dp (where gamma = gamma-aminobutyric acid, beta = beta-alanine, and Dp = dimethylaminopropylamide). Our data reveal that, at 20 degrees C, this ligand binds with a relatively modest 1.8-fold preference for the designated match site, 5'-TGGTA-3', over the single base pair mismatch site, 5'-TGTTA-3'. By contrast, we find that the ligand exhibits a 102-fold greater affinity for its designated match site relative to the double base pair mismatch site, 5'-TATTA-3'. These results demonstrate that the energetic cost of binding to a double mismatch site is not necessarily equal to twice the energetic cost of binding to a single mismatch site. Our calorimetrically measured binding enthalpies and calculated entropy data at 20 degrees C reveal the ligand sequence specificity to be enthalpic in origin. We have compared the DNA-binding properties of ImImPy-gamma-PyPyPy-beta-Dp with the hairpin polyamide, ImPyPy-gamma-PyPyPy-beta-Dp (an Im --> Py "mutant"). Our data reveal that both ligands exhibit high affinities for their designated match sites, consistent with the Dervan pairing rules. Our data also reveal that, relative to their corresponding single mismatch sites, ImImPy-gamma-PyPyPy-beta-Dp is less selective than ImPyPy-gamma-PyPyPy-beta-Dp for its designated match site. This result suggests, at least in this case, that enhanced binding affinity can be accompanied by some loss in sequence specificity. Such systematic comparative studies allow us to begin to establish the thermodynamic database required for the rational design of synthetic polyamides with predictable DNA-binding affinities and specificities.  相似文献   

3.
4.
5.
Synthetic ligands comprising three aromatic amino acids, pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp), specifically recognize predetermined sequences as side-by-side pairs in the minor groove of DNA. To expand the repertoire of aromatic rings that may be utilized for minor groove recognition, three five-membered heterocyclic rings, 3-pyrazolecarboxylic acid (3-Pz), 4-pyrazolecarboxylic acid (4-Pz), and furan-2-carboxylic acid (Fr), were examined at the N-terminus of eight-ring hairpin polyamide ligands. The DNA binding properties of 3-Pz, 4-Pz, and Fr each paired with Py were studied by quantitative DNase I footprinting titrations on a 283 bp DNA restriction fragment containing four 6-bp binding sites 5'-ATNCCTAA-3' (N = G, C, A, or T; 6-bp polyamide binding site is underlined). The pair 3-Pz/Py has increased binding affinity and sequence specificity for G.C bp compared with Im/Py.  相似文献   

6.
A novel diamino/dicationic polyamide f-Im(?)PyIm (5) that contains an orthogonally positioned aminopropyl chain on an imidazole (Im(?)) moiety was designed to target 5'-ACGCGT-3'. The DNA binding properties of the diamino polyamide 5, determined by CD, ΔT(M), DNase I footprinting, SPR, and ITC studies, were compared with those of its monoamino/monocationic counterpart f-ImPyIm (1) and its diamino/dicationic isomer f-ImPy(?)Im (2), which has the aminopropyl group attached to the central pyrrole unit (Py(?)). The results gave evidence for the minor groove binding and selectivity of polyamide 5 for the cognate sequence 5'-ACGCGT-3', and with strong affinity (K(eq)=2.3×10(7)M(-1)). However, the binding affinities varied according to the order: f-ImPy(?)Im (2)>f-ImPyIm (1)?f-Im(?)PyIm (5) confirming that the second amino group can improve affinity, but its position within the polyamide can affect affinity.  相似文献   

7.
A novel aryl-bis-benzimidazole amino acid analogue of the DNA-binding compound Hoechst 33258 has recently been designed for incorporation in peptide combinatorial libraries by replacing the N-methylpiperazine group with a carboxyl group and the hydroxy group with an amino-methyl group. The DNA-binding properties of the aryl-bis-benzimidazole monomer with the C-terminus derivatized with 3-(dimethylamino)-propylamine has been investigated in this paper by (1)H NMR studies of two different complexes with two different DNA sequences: A(5) d(5'-GCCA(5)CG-3'):d(5'-CGT(5)GGC-3') and A(3)T(3) d(5'-CGA(3)T(3)CG-3')(2). Chemical shift footprinting shows that the ligand binds at the center of the A(3)T(3) sequence but at the 3'-end of A(5). A large number of NOEs show a well-defined complex with the ligand situated at the center of the palindromic A(3)T(3) but with the asymmetric A(5) the ligand binds with an orientational preference with the bis-benzimidazole moiety displaced toward the 3'-end from the center of the duplex. Two families of models of the complexes with A(5) and A(3)T(3) were derived with restrained molecular dynamics based on a large set of 70 and 61, respectively, intermolecular ligand NOEs. Both models give a picture of a tightly fitting ligand with close van der Waals contacts with the walls of the minor groove and with the two benzimidazole and the amide hydrogens involved in bifurcated cross-strand hydrogen bonds to adenine N3 and thymine O2. The minor groove width of the models correlate well with the binding site of the ligand, and the orientational preference is argued to be a consequence of the minor groove width and hydrogen bonding.  相似文献   

8.
An analogue of the DNA-binding compound Hoechst 33258, in which the piperazine ring has been replaced by an imidazoline group, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The structure has been solved by X-ray diffraction analysis and has been refined to an R-factor of 19.7% at a resolution of 2.0 A. The ligand is found to bind in the minor groove, at the central four AATT base pairs of the B-DNA double helix, with the involvement of a number of van der Waals contacts and hydrogen bonds. There are significant differences in minor groove width for the two compounds, along much of the AATT region. In particular this structure shows a narrower groove at the 3' end of the binding site consistent with the narrower cross-section of the imidazole group compared with the piperazine ring of Hoechst 33258 and therefore a smaller perturbation in groove width. The higher binding affinity to DNA shown by this analogue compared with Hoechst 33258 itself, has been rationalised in terms of these differences.  相似文献   

9.
10.
Human estrogen-related receptor 2 (hERR2, ESRRB, ERRbeta, NR3B2) belongs to a class of nuclear receptors that bind DNA through sequence-specific interactions with a 5'-AGGTCA-3' estrogen response element (ERE) half-site in the major groove and an upstream 5'-TNA-3' site in the minor groove. This minor groove interaction is mediated by a C-terminal extension (CTE) of the DNA binding domain and is unique to the estrogen-related receptors. We have used synthetic pyrrole-imidazole polyamides, which bind specific sequences in the minor groove, to demonstrate that DNA binding by hERR2 is sensitive to the presence of polyamides in both the upstream minor groove CTE site and the minor groove of the ERE half-site. Thus, polyamides can inhibit hERR2 by two mechanisms, by direct steric blockage of minor groove DNA contacts mediated by the CTE and by changing the helical geometry of DNA such that major groove interactions are weakened. To confirm the generality of the latter approach, we show that the dimeric human estrogen receptor alpha (hERalpha, ESR1, NR3A1), which binds in the major groove of the ERE, can be inhibited by a polyamide bound in the opposing minor groove of the ERE. These results highlight two mechanisms for inhibition of protein-DNA interactions and extend the repertoire of DNA recognition motifs that can be inhibited by polyamides. These molecules may thus be useful for controlling expression of hERR2- or hERalpha-responsive genes.  相似文献   

11.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

12.
J Aymami  C M Nunn    S Neidle 《Nucleic acids research》1999,27(13):2691-2698
The crystal structure of the non-self-complementary dodecamer DNA duplex formed by d(CG[5BrC]ATAT-TTGCG) and d(CGCAAATATGCG) has been solved to 2.3 A resolution, together with that of its complex with the tris-benzimidazole minor groove binding ligand TRIBIZ. The inclusion of a bromine atom on one strand in each structure enabled the possibility of disorder to be discounted. The native structure has an exceptional narrow minor groove, of 2.5-2.6 A in the central part of the A/T region, which is increased in width by approximately 0.8 A on drug binding. The ligand molecule binds in the central part of the sequence. The benzimidazole subunits of the ligand participate in six bifurcated hydrogen bonds with A:T base pair edges, three to each DNA strand. The presence of a pair of C-H...O hydrogen bonds has been deduced from the close proximity of the pyrrolidine group of the ligand to the TpA step in the sequence.  相似文献   

13.
14.
15.
The structural and dynamic aspects of the interaction of the thiazole containing lexitropsin (1) with an oligodeoxyribonucleotide were studied by high field 1H-NMR spectroscopy. Complete assignment of the 1H-NMR resonances of lexitropsin 1 was accomplished by 2D-NMR techniques. The complexation-induced chemical shifts and NOE cross peaks in the NOESY map of the 1:1 complex of lexitropsin (1) and d-[CGCAATTGCG]2 reveal that the thiazole ring of the lexitropsin (1) intercalates between dA4.A5 bases and the rest of the ligand resides in the minor groove of the AT rich core of decamer, thus occupying the 5'-AATT sequence on the DNA. Intercalation of the thiazole moiety of the drug has been detected by the presence of intermolecular NOEs both in the major and the minor groove of the decamer helix. The absence of intranucleotide NOEs between base protons and H1'/H2' protons suggested local unwinding of the binding site on the DNA. From COSY and NOESY methods of 2D-NMR, it was established that the N-formyl (amino) terminus of the thiazole lexitropsin (1) is projecting into the major groove towards A5H8 while the amidinium terminus lies in the minor groove towards the T7G8 base pairs of the opposite strand. The expected intranucleotide NOEs confirmed that the decadeoxyribonucleotide in the 1:1 complex exists in a right handed B-conformation. The presence of exchange signals along the binding site 5'-AATT indicated an exchange of the bound drug process wherein the rate of exchange between the two equivalent sites was estimated to be congruent to 130 s-1 at 30 degrees C and with delta G degrees of 62.4 kJ mol-1. Force field and Pi calculations permitted a rationalization of the experimentally observed binding mode in terms of preferred conformation of the ligand and repeat length in lexitropsins compared with the DNA receptor.  相似文献   

16.
17.
In order to target specific DNA sequences >or=10 base pairs in size by minor groove binding ligands, a search for the optimal linker in dimers of hairpin polyamides was initiated. Two series of tandem polyamides ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-L](HN)gamma-PyPyPy-beta-Dp (1a-e), where L represents a series of 4-8 carbon long aliphatic amino acid linkers, and ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPyIm-L](HN)gamma-PyPyPy-beta-Dp (2a-e), where L represents a series of 2-6 carbon long aliphatic amino acid linkers, were synthesized and characterized by quantitative DNase I footprinting. beta, gamma and Dp represents beta-alanine, gamma-aminobutyric acid, and 3-(dimethylamino)propylamine, respectively. It was found that the five-carbon 5-aminovaleric acid (delta), is suitable to span one base-pair (bp) of DNA when incorporated into a tandem polyamide. ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-delta](HN)gamma-PyPyPy-beta-Dp (1b) binds the 10 bp binding-site 5'-AGTGAAGTGA-3' with equilibrium association constant K(a)=3.2 x 10(10) M(-1) and ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPyIm-delta](HN)gamma-PyPyPy-beta-Dp (2d) binds the 11 bp binding-site 5'-AGTGATAGTGA-3' with K(a)=9.7 x 10(9) M(-1). Tandem 1b also bind the 11 bp site but with lower affinity affording a 15-fold specificity for the shorter binding site. Replacing a methylene group in the amino acid linker with an oxygen atom to form tandem polyamide ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-E](HN)gamma-PyPyPy-beta-Dp (4) where E represents the ether linker, resulted in that an 80-fold specificity for the 10 bp binding site over the 11 bp site.  相似文献   

18.
We here study the interactions of a polyamide with large DNA, and compare to those of minor groove binder distamycin (DST), including high ligand/DNA binding ratios. Specific as well as nonspecific binding is probed using polarized-light spectroscopy combined with singular value decomposition analysis. Circular and linear dichroism data confirm binding geometries consistent with minor groove binding for both of the ligands. Interestingly, at high and intermediate ligand/DNA ratios the polyamide exhibits no significant sequence discrimination between mixed-sequence (calf thymus) and AT DNA as compared to DST. Each ligand is concluded to exhibit two different binding modes depending upon ligand/DNA ratio and nucleo-base sequence. At high binding ratios, distinct differences between the ligands are observed: circular dichroism spectra exciton effects provide evidence of bimolecular interactions of the polyamide when bound to AT-DNA, whereas no effects are seen with DST or mixed-sequence DNA. Also linear dichroism indicates that a change in binding geometry occurs at high polyamide/AT ratios, and that the effect occurs only with polyamide in contrast to DST. Since the effect is insignificant with DST, or with calf thymus DNA, it is concluded that it relates to the sizes of the ligands and the minor grooves, becoming critical in the limit of crowding.  相似文献   

19.
Hairpin conjugates of achiral seco-cyclopropaneindoline-2-benzofurancarboxamide (achiral seco-CI-Bf) and three diamides (ImPy 1, PyIm 2, and PyPy 3, where Py is pyrrole, and Im is imidazole), linked by a gamma-aminobutyrate group, were synthesized. The sequence-specific covalent alkylation of the achiral CI moiety with adenine-N3 in the minor groove was ascertained by thermally induced DNA cleavage experiments. The results provide evidence that hairpin conjugates of achiral seco-CI-Bf-gamma-polyamides could be tailored to target specific DNA sequences according to a set of general rules: the achiral CI moiety selectively reacts with adenine-N3, a stacked pair of imidazole/benzofuran prefers a G/C base pair, and a pyrrole/benzofuran prefers an A/T or T/A base pair. Models for the binding of hairpin conjugates 1-3 with sequences 5'-TCA(888)G-3', 5'-CAA(857)C-3', and 5'-TTA(843)C-3' are proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号