共查询到20条相似文献,搜索用时 140 毫秒
1.
近红外光学成像技术及其在神经科学中的应用 总被引:1,自引:0,他引:1
近红外光学成像技术是近年发展起来的一种动态检测脑功能的方法。采用这种技术可以测量在脑活动时氧合血红蛋白、脱氧血红蛋白和细胞色素氧化酶等的变化,同时得到与刺激相关的细胞内和细胞外活动的改变。近红外光学成像技术的时间分辨率较高,并具有简便易行、价格低廉和无损伤性等特点,有望可以同时检测神经元活动、能量代谢以有血液动力学的变化。目前它已作为检验功能性磁共振成像原理的一种方法,并在认知神经科学和医学等的研究中得到越来越广泛的应用。 相似文献
2.
3.
蛋白质组学这一概念从提出到现在已应用到生命科学许多领域.在中枢神经系统中,全脑以及许多脑区的蛋白质组数据库逐步建立,并且已经鉴定出了许多在神经系统疾病过程中起重要作用的蛋白.虽然神经系统蛋白质组学的研究尚处于起步阶段,但在阐明某些疾病的发病机制方面已取得长足发展.本文对蛋白质组学及其在神经科学中的研究进展作一综述. 相似文献
4.
本文概括性地叙述蛋白质组相关的基本概念,主要蛋白质组技术,微生物学蛋白质、比较蛋白质组、功能蛋白质组研究进展和蛋白质组技术在细胞微生物学研究中的应用。 相似文献
5.
6.
蛋白质组学是指对基因组编码的所有蛋白质进行大规模分析的一门学科,它分为表达蛋白质组学和功能蛋白质组学。新的蛋白质组学工具将为高度复杂的神经科学的研究提供便利。作者简述了表达蛋白质组学和功能蛋白质组学在这一领域的应用。 相似文献
7.
8.
基因芯片技术是伴随着人类基因组计划的实施而发展起来的生命科学领域里的前沿生物技术。它最显著的特点是高通量、高集成、微型化、平行化、多样化和自动化。经过短短十几年的发展,基因芯片技术现已在基因表达分析,基因突变及多态性分析,疾病基因诊断,药物及毒物基因组学等多个领域显示出重大的理论意义和实际应用价值,具有广阔的前景。本文专门介绍了基因芯片技术及其在疾病基因诊断上的应用。 相似文献
9.
10.
基因芯片技术及其在植物上的应用 总被引:7,自引:0,他引:7
基因芯片技术(gene chip technology)是采用光导原位合成或缩微印刷等方法,将大量特定的DNA探针片段有序地固定于固相载体的表面,形成DNA微阵列,然后与待测的标记样品靶DNA或RNA分子杂交,对杂交信号进行扫描及计算机检测分析,从而获取所需的生物信息。该技术在植物研究中广泛应用于寻找特异性相关基因和新基因,基因表达分析,基因突变和多态性检测,DNA测序等。 相似文献
11.
Various materials, such as glass, plastic, metals, etc., are utilized for preparing DNA chips. In each particular case special approaches are used for immobilization of different oligonucleotide derivatives on the solid supports. We describe a general technique for DNA chips preparation on various unmodified surfaces using one type of oligonucleotide derivative, polylysine-oligonucleotide conjugates (PL-oligo). A long polyamine spacer in the PL-oligo conjugates provides a durable irreversible non-covalent immobilization onto a variety of solid supports and enough distance between oligonucleotides and the surface. The resulting DNA chips were shown to be useful for the detection of PCR DNA fragments and to be sensitive to single nucleotide discrepancies. They represent a promising instrument for revealing genetic diseases, genotyping viruses and bacteria, and for displaying their drug-resistant strains. 相似文献
12.
Microarrays have revolutionized gene expression analysis as they allow for highly parallel monitoring of mRNA levels of thousands
of genes in a single experiment. Since their introduction some 15 years ago, substantial progress has been achieved with regard
to, e.g., faster or more sensitive analyses. In this review, interesting new approaches for a more sensitive detection of
specific mRNAs will be highlighted. Particularly, the potential of electrical DNA chip formats that allow for faster mRNA
analyses will be discussed. 相似文献
13.
14.
Grönwall C Sjöberg A Ramström M Höidén-Guthenberg I Hober S Jonasson P Ståhl S 《Biotechnology journal》2007,2(11):1389-1398
An Affibody (Affibody) ligand with specific binding to human transferrin was selected by phage display technology from a combinatorial protein library based on the staphylococcal protein A (SpA)-derived Z domain. Strong and selective binding of the selected Affibody ligand to transferrin was demonstrated using biosensor technology and dot blot analysis. Impressive specificity was demonstrated as transferrin was the only protein recovered by affinity chromatography from human plasma. Efficient Affibody-mediated capture of transferrin, combined with IgG- and HSA-depletion, was demonstrated for human plasma and cerebrospinal fluid (CSF). For plasma, 85% of the total transferrin content in the samples was depleted after only two cycles of transferrin removal, and for CSF, 78% efficiency was obtained in single-step depletion. These results clearly suggest a potential for the development of Affibody-based resins for the removal of abundant proteins in proteomics analyses. 相似文献
15.
基因芯片是近年发展起来的一种高通量的核酸分析技术,已成为“后基因组时代”的重要分析工具之一。本简述了基因芯片的概念、分类及特点,并对基因芯片技术在性传播疾病病原体淋球菌、沙眼衣原体、解脲脲原体和人乳头瘤病毒研究中的应用作了综述。 相似文献
16.
Biomedical applications of protein chips 总被引:2,自引:0,他引:2
The development of microchips involving proteins has accelerated within the past few years. Although DNA chip technologies formed the precedent, many different strategies and technologies have been used because proteins are inherently a more complex type of molecule. This review covers the various biomedical applications of protein chips in diagnostics, drug screening and testing, disease monitoring, drug discovery (proteomics), and medical research. The proteomics and drug discovery section is further subdivided to cover drug discovery tools (on-chip separations, expression profiling, and antibody arrays), molecular interactions and signaling pathways, the identification of protein function, and the identification of novel therapeutic compounds. Although largely focused on protein chips, this review includes chips involving cells and tissues as a logical extension of the type of data that can be generated from these microchips. 相似文献
17.
DNA芯片技术在微生物学研究中的应用 总被引:4,自引:0,他引:4
DNA芯片技术作为一种高通量的核酸分析方法,已经成为“后基因组时代”中研究海量序列信息的重要分析工具之一。本简述了目前一些常用以及和新出现的DNA芯片的技术原理,并从微生物基因表达谱研究,微生物基因组学研究以及微生物检测鉴定研究等多个方面概述了DNA芯片技术在微生物学中的应用,同时在对DNA芯片技术的不足进行简要分析的基础上,展望了其进一步应用的前景。 相似文献
18.
19.
DNA microarray is an important tool in biomedical research. Up to now, there are no chips that can allow both quality analysis and hybridization using the same chip. It is risky to draw conclusions from results of different chips if there is no knowledge of the quality of the chips before hybridization. In this article, we report a colorimetric method to do quality control on an array. The quality analysis of probe spots can be obtained by using gold nanoparticles with positive charges to label DNA through electrostatic attraction. The probe spots can also be detected by a simple personal computer scanner. Gold nanoparticles deposited on a glass surface can be dissolved in bromine-bromide solution. The same microarray treated with gold particles staining and destaining can still be used for hybridization with nearly the same efficiency. This approach makes quality control of a microarray chip feasible and should be a valuable tool for biomarker discovery in the future. 相似文献
20.
Sebastien Gallien 《Expert review of proteomics》2015,12(5):489-498
The advances in high-resolution mass spectrometry instrumentation, capable of accurate mass measurement and fast acquisition, have enabled new approaches for targeted quantitative proteomics. More specifically, analyses performed on quadrupole-orbitrap mass spectrometers operated in parallel reaction monitoring (PRM) mode leverage the intrinsic high resolving power and trapping capabilities. The PRM technique offers unmatched degrees of selectivity and analytical sensitivity, typically required to analyze peptides in complex samples, such as those encountered in biomedical research or clinical studies. The features of PRM have provoked a paradigm change in targeted experiments, by decoupling acquisition and data processing. It has resulted in a new analytical workflow comprising distinct methods for each step, thus enabling much larger flexibility. The PRM technique was further enhanced by a new data acquisition scheme, allowing dynamic parameter settings. The potential of the technique may radically impact future quantitative proteomics studies. 相似文献