首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

2.
An in vitro perfused carotid body preparation was developed to study its chemosensory responses to physiological and pharmacological stimuli. The carotid bifurcation with the carotid body was vascularly isolated and excised from pentobarbital sodium-anesthetized cats. The CB was perfused in a chamber by gravity (80 Torr) with modified Tyrode's solution (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-NaOH at pH 7.40) equilibrated at a given Po2 and superfused with the same medium at (Po2 of 20 Torr). The temperature was maintained at 35.5 +/- 0.5 degrees C. The frequency of chemosensory discharges (CD) was recorded from the whole carotid sinus nerve (n = 24), and the responses were tested by repeated interruptions of perfusate flow (SF), perfusion with hypoxic medium, and injections of nicotine and cyanide (0.1 nmol to 1 mumol) and hypercapnic medium. During hyperoxic perfusion, SF resulted in a sigmoidal increase in CD, reaching a maximum that was 23.6 +/- 4.4-fold greater than the basal activity. Restoration of flow returned CD promptly to basal values. After normoxic perfusion, SF led to a similar maximal activity more rapidly, but the duration was shorter. Reduction of the perfusate PO2 (Po2 from 450 Torr to 150, 30, and less than 10 Torr) caused a nonlinear increase in CD. CO2 stimuli (PCo2 38-110 Torr) resulted in a linear increase in CD. Nicotine or cyanide increased CD in a dose-dependent manner. The preparation retained its initial responsiveness for 2-3 h, making extensive experimental studies feasible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purpose of this study was to determine whether pulmonary venous pressure increases during alveolar hypoxia in lungs of newborn pigs. We isolated and perfused with blood the lungs from seven newborn pigs, 6-7 days old. We maintained blood flow constant at 50 ml.min-1.kg-1 and continuously monitored pulmonary arterial and left atrial pressures. Using the micropuncture technique, we measured pressures in 10 to 60-microns-diam venules during inflation with normoxic (21% O2-69-74% N2-5-10% CO2) and hypoxic (90-95% N2-5-10% CO2) gas mixtures. PO2 was 142 +/- 21 Torr during normoxia and 20 +/- 4 Torr during hypoxia. During micropuncture we inflated the lungs to a constant airway pressure of 5 cmH2O and kept left atrial pressure greater than airway pressure (zone 3). During hypoxia, pulmonary arterial pressure increased by 69 +/- 24% and pressure in small venules increased by 40 +/- 23%. These results are similar to those obtained with newborn lambs and ferrets but differ from results with newborn rabbits. The site of hypoxic vasoconstriction in newborn lungs is species dependent.  相似文献   

4.
We studied ventilatory responsiveness to hypoxia and hypercapnia in anesthetized cats before and after exposure to 5 atmospheres absolute O2 for 90-135 min. The acute hyperbaric oxygenation (HBO) was terminated at the onset of slow labored breathing. Tracheal airflow, inspiratory (TI) and expiratory (TE) times, inspiratory tidal volume (VT), end-tidal PO2 and PCO2, and arterial blood pressure were recorded simultaneously before and after HBO. Steady-state ventilation (VI at three arterial PO2 (PaO2) levels of approximately 99, 67, and 47 Torr at a maintained arterial PCO2 (PaCO2, 28 Torr) was measured for the hypoxic response. Ventilation at three steady-state PaCO2 levels of approximately 27, 36, and 46 Torr during hyperoxia (PaO2 450 Torr) gave a hypercapnic response. Both chemical stimuli significantly stimulated VT, breathing frequency, and VI before and after HBO. VT, TI, and TE at a given stimulus were significantly greater after HBO without a significant change in VT/TI. The breathing pattern, however, was abnormal after HBO, often showing inspiratory apneusis. Bilateral vagotomy diminished apneusis and further prolonged TI and TE and increased VT. Thus a part of the respiratory effects of HBO is due to pulmonary mechanoreflex changes.  相似文献   

5.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

6.
We investigated the effect of increasing hemoglobin- (Hb) O2 affinity on muscle maximal O2 uptake (VO2max) while muscle blood flow, [Hb], HbO2 saturation, and thus O2 delivery (muscle blood flow X arterial O2 content) to the working muscle were kept unchanged from control. VO2max was measured in isolated in situ canine gastrocnemius working maximally (isometric tetanic contractions). The muscles were pump perfused, in alternating order, with either normal blood [O2 half-saturation pressure of hemoglobin (P50) = 32.1 +/- 0.5 (SE) Torr] or blood from dogs that had been fed sodium cyanate (150 mg.kg-1.day-1) for 3-4 wk (P50 = 23.2 +/- 0.9). In both conditions (n = 8) arterial PO2 was set at approximately 200 Torr to fully saturate arterial blood, which thereby produced the same arterial O2 contents, and muscle blood flow was set at 106 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. VO2max was 11.8 +/- 1.0 ml.min-1.100 g-1 when perfused with the normal blood (control) and was reduced by 17% to 9.8 +/- 0.7 ml.min-1.100 g-1 when perfused with the low-P50 blood (P less than 0.01). Mean muscle effluent venous PO2 was also significantly less (26 +/- 3 vs. 30 +/- 2 Torr; P less than 0.01) in the low-P50 condition, as was an estimate of the capillary driving pressure for O2 diffusion, the mean capillary PO2 (45 +/- 3 vs. 51 +/- 2 Torr). However, the estimated muscle O2 diffusing capacity was not different between conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this study was to examine the development of fatigue in isolated, single skeletal muscle fibers when O2 availability was reduced but not to levels considered rate limiting to mitochondrial respiration. Tetanic force was measured in single living muscle fibers (n = 6) from Xenopus laevis while being stimulated at increasing contraction rates (0.25, 0.33, 0.5, and 1 Hz) in a sequential manner, with each stimulation frequency lasting 2 min. Muscle fatigue (determined as 75% of initial maximum force) was measured during three separate work bouts (with 45 min of rest between) as the perfusate PO2 was switched between values of 30 +/- 1.9, 76 +/- 3.0, or 159 Torr in a blocked-order design. No significant differences were found in the initial peak tensions between the high-, intermediate-, and low-PO2 treatments (323 +/- 22, 298 +/- 27, and 331 +/- 24 kPa, respectively). The time to fatigue was reached significantly sooner (P < 0.05) during the 30-Torr treatment (233 +/- 39 s) compared with the 76- (385 +/- 62 s) or 159-Torr (416 +/- 65 s) treatments. The calculated critical extracellular PO2 necessary to develop an anoxic core within these fibers was 13 +/- 1 Torr, indicating that the extracellular PO2 of 30 Torr should not have been rate limiting to mitochondrial respiration. The magnitude of an unstirred layer (243 +/- 64 micron) or an intracellular O2 diffusion coefficient (0.45 +/- 0.04 x 10(-5) cm2/s) necessary to develop an anoxic core under the conditions of the study was unlikely. The earlier initiation of fatigue during the lowest extracellular PO2 condition, at physiologically high intracellular PO2 levels, suggests that muscle performance may be O2 dependent even when mitochondrial respiration is not necessarily compromised.  相似文献   

8.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

10.
It has been proposed that an increase in the affinity of hemoglobin for O2 may be beneficial in severe hypoxemia. To test this hypothesis, we compared the response to progressive hypoxemia in dogs with normal hemoglobin affinity (P50 = 32.4 +/- 0.7 Torr) to dogs with a left shift of the oxyhemoglobin dissociation curve (P50 = 21.9 +/- 0.5 Torr) induced by chronic oral administration of sodium cyanate. Animals were anesthetized, paralyzed, and mechanically ventilated. The inspired O2 fraction was progressively lowered by increasing the inspired fraction of N2. The lowest level of O2 transport required to maintain base-line O2 consumption (VO2) was 9.3 +/- 0.8 ml.min-1.kg-1 for control and 16.5 +/- 1.1 ml.min-1.kg-1 for the sodium cyanate-treated dogs (P less than 0.01). Other measured parameters at this level of O2 transport were, for experimental vs. control: arterial PO2 19.3 +/- 2.4 (SE) Torr vs. 21.8 +/- 1.6 Torr (NS); arterial O2 content 10.0 +/- 1.2 ml/dl vs. 4.9 +/- 0.4 ml/dl (P less than 0.01); mixed venous PO2 14.0 +/- 1.5 Torr vs. 13.8 +/- 1.0 Torr (NS); mixed venous O2 content 6.8 +/- 1.0 ml/dl vs. 2.3 +/- 0.2 ml/dl (P less than 0.01); and O2 extraction ratio 32.7 +/- 2.8% vs. 51.2 +/- 3.8% (P less than 0.01). We conclude that chronic administration of sodium cyanate appears to be detrimental to O2 transport, since the experimental dogs were unable to increase their O2 extraction ratios to the same level as control, thus requiring a higher level of O2 transport to maintain their base-line VO2 values.  相似文献   

11.
Pulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600-4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3- concentration = 15.1 meq/l), resting arterial pH in L was 7.48 +/- 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 +/- 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600-4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P < 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 +/- 1.3 Torr) than in L (10.5 +/- 0.8 Torr), P = 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.  相似文献   

12.
The proton Bohr factor (phi H = alpha log PO2/alpha pH), the carbamate Bohr factor (phi C = alpha log PO2/alpha log PCO2), the total Bohr factor (phi HC = d log PO2/dpH[base excess) and the CO2 buffer factor (d log PCO2/dpH) were determined in the blood of 12 healthy donors over the whole O2 saturation (SO2) range. All three Bohr factors proved to be dependent on SO2, although to a lesser extent than reported in some of the recent literature. At SO2 = 50% and 37 degrees C, we found phi H = -0.428 +/- 0.010 (SE), phi C = 0.054 +/- 0.006, and phi HC = -0.488 +/- 0.007. The values obtained for phi H, phi C, and d log PCO2/dpH were used to calculate phi HC. Calculated and measured values of phi HC proved to be in good agreement. In an additional series of 12 specimens of human blood we determined the influence of PCO2 on phi H and the influence of pH on phi C. At SO2 = 50%, phi H varied from -0.49 +/- 0.009 at PCO2 = 15 Torr to -0.31 +/- 0.010 at PCO2 = 105 Torr and phi C from 0.157 +/- 0.015 at pH = 7.80 to 0.006 +/- 0.009 at pH = 7.00. When on the basis of these data a second-order term is taken into account, a still slightly better agreement between measured and calculated values of phi HC can be attained.  相似文献   

13.
The O2 sensor that triggers hypoxic pulmonary vasoconstriction may be sensitive not only to alveolar hypoxia but also to hypoxia in mixed venous blood. A specific test of the blood contribution would be to lower mixed venous PO2 (PvO2), which can be accomplished by increasing hemoglobin-O2 affinity. When we exchanged transfused rats with cyanate-treated erythrocytes [PO2 at 50% hemoglobin saturation (P50) = 21 Torr] or with Créteil erythrocytes (P50 = 13.1 Torr), we lowered PvO2 from 39 +/- 5 to 25 +/- 4 and to 14 +/- 4 Torr, respectively, without altering arterial blood gases or hemoglobin concentration. Right ventricular systolic pressure increased from 32 +/- 2 to 36 +/- 3 Torr with cyanate erythrocytes and to 44 +/- 5 Torr with Créteil erythrocytes. Cardiac output was unchanged. Control exchange transfusions with normal rat or 2,3-diphosphoglycerate-enriched human erythrocytes had no effect on PvO2 or right ventricular pressure. Alveolar hypoxia plus high O2 affinity blood caused a greater increase in right ventricular systolic pressure than either stimulus alone. We concluded that PvO2 is an important determinant of pulmonary vascular tone in the rat.  相似文献   

14.
The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We perfused an isolated rabbit hindlimb preparation with suspensions of human erythrocytes (RBC) having different O2 affinities. Our objective was to compare the effect of changes in P50, the PO2 at which hemoglobin is 50% saturated, on tissue O2 consumption during severe hypoxemia. A high-affinity (HA) group (n = 9) was perfused with RBC incubated in NaCNO (P50 = 21.4 +/- 1.9 Torr). This was compared with a low-affinity (LA) group (n = 9) perfused with rejuvenated RBC (P50 = 31.1 +/- 1.8 Torr). The arterial PO2 of the perfusate was decreased to approximately 24 Torr in both preparations. Perfusion flow and hemoglobin concentration were maintained constant. During hypoxemia arterial O2 saturation and total O2 transport (TO2) were greater in the HA than the LA group (P less than 0.05). O2 consumption and effluent venous PO2 decreased with hypoxemia in both groups to similar levels. Consequently, the LA group showed a greater O2 extraction ratio than the HA group (P less than 0.05). The ratio of phosphocreatine to inorganic phosphate, measured with 31P magnetic resonance spectroscopy, decreased at a comparable rate in both groups. As shown by a mathematical model of peripheral O2 transport, these experimental results can be explained on the basis of peripheral limitation to O2 diffusion. We conclude that increased hemoglobin affinity does not appreciably improve tissue oxygenation in hypoxemia, since the increase in TO2 is offset by diffusion limitation at the tissues.  相似文献   

16.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

17.
Evidence for tissue diffusion limitation of VO2max in normal humans   总被引:3,自引:0,他引:3  
We recently found [at approximately 90% maximal O2 consumption (VO2max)] that as inspiratory PO2 (PIO2) was reduced, VO2 and mixed venous PO2 (PVO2) fell together along a straight line through the origin, suggesting tissue diffusion limitation of VO2max. To extend these observations to VO2max and directly examine effluent venous blood from muscle, six normal men cycled at VO2max while breathing air, 15% O2 and 12% O2 in random order on a single day. From femoral venous, mixed venous, and radial arterial samples, we measured PO2, PCO2, pH, and lactate and computed mean muscle capillary PO2 by Bohr integration between arterial (PaO2) and femoral venous PO2 (PfvO2). VO2 and CO2 production (VCO2) were measured by expired gas analysis, VO2max averaged 61.5 +/- 6.2 (air), 48.6 +/- 4.8 (15% O2), and 38.1 +/- 4.1 (12% O2) ml.kg-1.min-1. Corresponding values were 16.8 +/- 5.6, 14.4 +/- 5.0, and 12.0 +/- 5.0 Torr for PfVO2; 23.6 +/- 3.2, 19.1 +/- 4.2, and 16.2 +/- 3.5 Torr for PVO2; and 38.5 +/- 5.4, 30.3 +/- 4.1, and 24.5 +/- 3.6 Torr for muscle capillary PO2 (PmCO2). Each of the PO2 variables was linearly related to VO2max (r = 0.99 each), with an intercept not different from the origin. Similar results were obtained when the subjects were pushed to a work load 30 W higher to ensure that VO2max had been achieved. By extending our prior observations 1) to maximum VO2 and 2) by direct sampling of femoral venous blood, we conclude that tissue diffusion limitation of VO2max may be present in normal humans. In addition, since PVO2, PfVO2, and PmCO2 all linearly relate to VO2max, we suggest that whichever of these is most readily obtained is acceptable for further evaluation of the hypothesis.  相似文献   

18.
Diaphragmatic O2 and lactate extraction were examined in seven healthy ponies during maximal exercise (ME) carried out without, as well as with, inspiratory resistive breathing. Arterial and diaphragmatic venous blood were sampled simultaneously at rest and at 30-s intervals during the 4 min of ME. Experiments were carried out before and after left laryngeal hemiplegia (LH) was produced. During ME, normal ponies exhibited hypocapnia, hemoconcentration, and a decrease in arterial PO2 (PaO2) with insignificant change in O2 saturation. In LH ponies, PaO2 and O2 saturation decreased well below that in normal ponies, but because of higher hemoglobin concentration, arterial O2 content exceeded that in normal ponies. Because of their high PaCO2 during ME, acidosis was more pronounced in LH animals despite similar lactate values. Diaphragmatic venous PO2 and O2 saturation decreased with ME to 15.5 +/- 0.9 Torr and 18 +/- 0.5%, respectively, at 120 s of exercise in normal ponies. In LH ponies, corresponding values were significantly less: 12.4 +/- 1.3 Torr and 15.5 +/- 0.7% at 120 s and 9.8 +/- 1.4 Torr and 14.3 +/- 0.6% at 240 s of ME. Mean phrenic O2 extraction plateaued at 81 and 83% in normal and LH animals, respectively. Significant differences in lactate concentration between arterial and phrenic-venous blood were not observed during ME. It is concluded that PO2 and O2 saturation in the phrenic-venous blood of normal ponies do not reach their lowest possible values even during ME. Also, the healthy equine diaphragm, even with the added stress of inspiratory resistive breathing, did not engage in net lactate production.  相似文献   

19.
Oxygen dissociation curves (ODC) in whole blood and organic phosphate concentrations in red cells were determined in 10 highly trained male athletes (TR), 6 semitrained subjects (ST) who played sports regularly at low intensities and 8 untrained people (UT). In all groups standard ODCs (37 degrees C, pH 7.40, PCO2 approximately 43 Torr) at rest and after a short exhaustive exercise were nearly identical, but PO2 values measured immediately after blood sampling and corrected to standard conditions tended to fall to the right of the in vitro ODC. Elevated P50 in the physically active [28.65 +/- 1.4 Torr (3.81 +/- 0.18 kPa) in ST, 28.0 +/- 1.1 Torr (3.73 +/- 0.15 kPa) in TR, but 26.5 +/- 1.1 Torr (3.53 +/- 0.15 kPa) in UT] were partly caused by different [DPG] (11.9 +/- 1.3 mumol/GHb in UT, 13.3 +/- 1.5 mumol/GHb in TR, 13.8 +/- 2.2 mumol/gHb in ST). There were remarkable differences in the shape of the curves between the groups. The slope "n" in the Hill plot amounted to 2.65 +/- 0.12 in UT, 2.74 +/- in ST and 2.90 +/- 0.11 in the TR (2 p against UT less than 0.001), leading to an elevated oxygen pressure of about 2 Torr (0.27 kPa) at 20% saturation and an augmented oxygen extraction of 5--7 SO2 at a PO2 of about 15 Torr (2kPa), which might be favorable at high workloads. The reason for the phenomenon could be an increased amount of young red cells in the blood of TR, caused by exercise induced hemolysis.  相似文献   

20.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号