首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
近40年青藏高原植被动态变化对水热条件的响应   总被引:4,自引:0,他引:4  
植被对水热条件的响应因生态系统的空间异质性而具有显著的差异。基于GIMMS NDVI3g和MODIS NDVI逐旬数据集,通过数据融合构建的青藏高原1982—2020年的植被时间序列,利用Mann-Kendall趋势法分析近40年植被动态变化及其对温度、降水和辐射等水热条件的响应,并划定了植被动态的主要水热驱动因子分区。结果表明:(1)近40年青藏高原植被生长季平均NDVI呈现显著上升趋势,增速为0.006/10a,植被NDVI显著增加和减少的区域分别占青藏高原总面积的73.97%和18.38%;(2)青藏高原植被对水热条件的响应在静态上表现为高原腹地较高原边缘更加明显;在动态上表现为不同植被类型区对水热因子的响应关系、方向、程度均有所不同;整体上除森林和灌丛外,所有高寒植被类型与降水的响应程度要优于温度和辐射;(3)青藏高原植被生长受水热因子驱动的区域占高原总面积的55.95%,其中42.72%以上的区域气温、降水和太阳辐射的驱动作用是互补的,13.23%的区域由多个水热因子联合驱动;44.05%的区域为非气候驱动区。  相似文献   

2.
本文用定量方法,研究了东北地带性植被建群种及常见种的分布与水热条件之间的关系。确定了它们水热指标分布的范围和类群以及分布特点,并探讨了东北地区的植被带水热指标值。  相似文献   

3.
崇明东滩盐沼植被扩散格局及其形成机制   总被引:8,自引:0,他引:8  
曹浩冰  葛振鸣  祝振昌  张利权 《生态学报》2014,34(14):3944-3952
长江河口盐沼植被的形成和演化是生物与其生长环境相互作用的结果。以崇明东滩盐沼植被典型扩散前沿为研究对象,2011至2012年期间调查了盐沼植被扩散前沿实生苗扩散、定居以及形成的扩散格局,同时测定了盐沼植被扩散前沿的潮滩冲淤动态和水文动力条件。研究结果表明,崇明东滩盐沼植被在扩散前沿形成了互花米草-光滩(Spartina alterniflora-Mudflat,SM)和互花米草-海三棱藨草-光滩(Spartina alterniflora-Scirpus mariqueter-Mudflat,SSM)两种典型的扩散格局。冲淤动态和水文动力条件是影响盐沼植被扩散格局的重要因子,尤其是在4—6月盐沼植物实生苗传播和定居的关键阶段。在此基础上,分析了东滩盐沼植被扩散前沿的生物-物理相互作用以及盐沼植被扩散格局的形成机制。研究结果不仅有助于理解长江河口地区盐沼植被扩散的生物物理过程,并对全球气候变化和海平面上升条件下滨海生态系统动态预测与湿地保护与管理具有重要的意义。  相似文献   

4.
黄河上游不同干湿气候区植被对气候变化的响应   总被引:7,自引:0,他引:7       下载免费PDF全文
 研究气候变化背景下植被变化趋势及其与水热因子的关系, 对于黄河源区的生态恢复和生态建设具有重要意义。采用基于FAO Penman-Monteith的降水蒸散比来描述区域的干湿状况, 划分了黄河上游地区的干湿气候区。在此基础上, 利用AVHRR归一化植被指数(NDVI)和GLOPEM净初级生产力(NPP)数据集和同期的气候资料, 分析了黄河上游植被覆盖、植被生产力和气候变化的趋势, 探讨了不同干湿气候区影响植被变化的主要气候因子。结果表明, 研究区域东南部为半湿润气候区, 其余为半干旱气候区, 干湿气候分界线与450 mm降水等值线较接近; 1981–2006年区域气候趋于干暖化, 尤其是气温的升高趋势明显; 半湿润地区NDVI和NPP显著增加, 半干旱地区略有增加; 半湿润地区的NDVI多与气温显著正相关, 与降水量的相关性较弱, 气温是植被生长的主要气候制约因素; 半干旱地区的NDVI则与降水量的正相关性更强, 对降水量的变化较为敏感。NPP对气候变化的响应模式与NDVI相似。植被对气候变化的响应部分依赖于研究区域所具备的水热条件, 干湿气候划分有助于更好地解释植被对气候变化响应的空间差异。  相似文献   

5.
中国东北主要植被类型的分布与气候的关系   总被引:38,自引:0,他引:38       下载免费PDF全文
本文根据吉良的热量指标和作者提出的湿度指数,研究了我国东北主要植被类型的分布与气候之间的关系:1.确定了东北地区10个水平地带性植被类型的热量分布范围和水热指标的平均值。2.研究了东北山地垂直地带性植被类型的水热指标分布特点,并用定量指标讨论了东北东部山地岳桦林带的分布、大兴安岭存在山地冻原和东北植被区域的分界线问题。  相似文献   

6.
本文讨论了西藏波密古乡地区的主要植物群落及其垂直分布。 1.根据小带间植物种类相似系数情况,将波密古乡地区南、北坡划成八个植物垂直带 (图1)。 2.描述了七个不同性质的植物群落。各群落分布与水热条件之间的相互关系如图2所 示。 3.由于不同水热条件的影响,各植被带间在植物种数上的差异是比较显著的(表3)。  相似文献   

7.
纵向岭谷区植被景观多样性的空间格局   总被引:2,自引:0,他引:2  
基于中国1∶100万植被类型数据,采用GIS空间分析方法,分析了纵向岭谷区主要植被景观多样性指数的空间格局及其与环境因子之间的关系.结果表明:研究纵向岭谷区植被景观多样性的理想粒度是2000m;纵向岭谷区植被景观多样性指数的空间格局具有明显的区域分异特征,表现为南北方向延伸、东西方向分异的"通道-阻隔"空间格局;植被景观多样性与环境因子的相关性较好,环境因子在空间上的分异格局是影响植被景观多样性指数在空间格局上变化的主要因素.纵向岭谷特殊地形的"通道-阻隔"作用对该区的水热空间分布进行了再分配,是该区植被景观多样性的特殊空间格局的主要成因.  相似文献   

8.
重庆国家重点保护野生植物的分布与水热关系的初步研究   总被引:4,自引:0,他引:4  
通过对重庆国家重点保护野生植物的分布与水热关系的研究,确定了这些植物种分布的水热幅度,并利用温暖指数(WI)、寒冷指数(CI)和湿润指数(HI)对这些植物种进行聚合分类,结果可将这些植物种分为5个水热分布类群:Ⅰ.高温湿润型,Ⅱ.高中温湿润型,Ⅲ.中温湿润型,Ⅳ.低中温湿润型和Ⅴ.低温湿润型。另外,研究还表明了重庆地区的水热条件较好,适合这些重点保护野生植物的生长发育,因此,水热条件的现状不是濒危植物种濒危的主要原因,而人为破坏是其濒危的相当重要的因素。  相似文献   

9.
达乌尔鼠兔扩散过程中的生境选择   总被引:14,自引:0,他引:14  
王梦军  钟文勤 《动物学报》1998,44(4):398-405
通过调控牧压,研究了达乌尔鼠兔扩散过程中的生境选择。结果表明,放牧活动强了草原植被的斑块性,改变了植被为鼠兔提供的资源条件,导致鼠兔斑块间的扩散和扩散鼠兔对不同植被斑块的生境选择。  相似文献   

10.
中国干旱半干旱区潜在植被演替   总被引:3,自引:1,他引:3  
李飞  赵军  赵传燕  张小强 《生态学报》2011,31(3):689-697
研究中国干旱半干旱区植被背景,成为其生态环境建设方面的基础性和指导性的工作。潜在植被作为一种与所处立地达到平衡的演替终态,反映的是无人类干扰的情况下,立地所能发育形成的最稳定成熟的一种顶极植被类型,是一个地区现状植被的发展趋势,对本地区植被生态的恢复和重建具有重要的指导意义。以综合顺序分类法为基本理论方法,在GIS研究方法支持下,采用中国干旱半干旱区119个气象观测站1961-2005年的年降水数据与115个气象观测站1961-2005的>0℃年积温数据,以15a的年平均数据为时间周期,对中国干旱半干旱区潜在植被的演替进行了分析,得出了以下结论:在中国干旱半干旱区,潜在植被类型之间发生了复杂的演替过程。1961-1975年间,分布在中国干旱半干旱区的潜在植被有10种类型,由于气候变化,到20世纪90年代后期仅剩6种类型。在潜在植被类型之间的转化特征与数量方面,表现出3种特点,稳定减少、稳定增加与波动性变化。在潜在植被类型地理分布格局变化与发展方向方面,演替明显的地区主要有:吐鲁番盆地、锡林郭勒高原北部、呼伦贝尔高原、太平岭地区;在发展方向上,潜在植被的空间变化方向(演替方向)均异。潜在植被类型演替的驱动因素主要是气候变化条件下,影响植被分布的水热条件发生了改变。  相似文献   

11.
Six species of pines are distributed in Xizang. They are: Pinus griffithii McClell., P. armandi Franch. and P. gerardiana Wall. of haploxylon pines and P. densata Mast., P. yttnnanensis French. and P. roxburghii Sarg. of diploxylon pines. According to the relation of these pines with water-temperature conditions, 4 ecological types may be divided: the warm-temp erate and wet type (P. griffithii), the warm-temperate and dry type (P. yunnanensis, P. roxburghii), the temperate-cold and moist type (P. armandi) and the temperate-cold and dry type (P. densata). The composition and structure of every pine community reflect the ecological environments of the given pine in the region. The main pine comnmnity in Xizang are P. griffithii forest and P. densata forest. The P. griffithii forest is distributed on the southern side of Himalayas, while the P. densata forest on the northern side of Himalayas and the southern part of Hengtuan mountains. This indicates that the Himalaya range is a clear boundary and there is difference in water-temperature condition between southern and northern parts. They belong different vegetation regions. The different distribution of other several pine forests reflects the difference of environmental conditions within these two regions. These facts have significance in the investigation of the regularity of vegetation distribution and vegetation division in Xizang. Besides, the vertical distribution of pines cannot be used as a marker to divide the altitudinal belts due to the wide range of adaptation of pines, though there must be regularity of vertical distribution too.  相似文献   

12.
 广泛收集植物的分布资料,包括杨梅科、胡桃科、壳斗科、木兰科、樟科、山茶科、金缕梅科、交让木科、杜英科、五加科、安息香科、冬青科、杜鹃花科、山矾科的优势种和常见种112个,利用目前在国际上被认为是较好的几种研究植被—气候相互关系的指标和方法,包括:Kira方法;Penman公式;Thornthwaite方法与分类;Holdridge生命地带分类系统指标与方法,分析中国亚热带常绿阔叶林优势种及常见种分布与气候的生态关系,找出它们的地理分布特征和气候指标特征,建立现代植被与气候的关系。(1)利用Kira的温暖指数(WI)和寒冷指数(CI)及徐文铎的湿润指数(HI),计算了中国亚热带常绿阔叶林112个优势种及常见种的水热指标值,分析了树种分布与气候的关系,并将优势种及常见种划分为5个Kira水热指标分布类群。(2)计算了112个优势种及常见种的Penman可能蒸散(PET)和干燥度(A)值,划分了5个优势种及常见种的Penman水热指标分布类群。(3)计算了树种的Thornthwaite潜在可能蒸散(APE)及湿润指数(IH)、干旱指数(IA)和水分指数(IM),划分了优势种及常见种的Thornthwaite水热指标分布类群。(4)计算了树种的Holdridge生物温度(BT)、可能蒸散(PE)、降水量(P)及可能蒸散率(PER),划分了优势种及常见种的Holdridge水热指标分布类群。  相似文献   

13.
Howe HF 《Oecologia》2008,157(2):279-286
It is not clear how plant species preferred as forage by rodents persist in prairie vegetation. To test permanence of suppression of wet-mesic prairie vegetation by vole (Microtus pennsylvanicus) herbivory in synthetic experimental communities, access treatments were reversed after 9 years of vole exclusion or access. Between 1996 and 2004, rye grass Elymus virginicus (Poaceae) and tick-trefoil Desmodium canadense (Fabaceae) achieved mean cover of up to 30 and 25%, respectively, in plots where voles were excluded, but disappeared from plots where voles had access. To determine whether these species remained vulnerable to vole herbivory as established adults, and to determine whether the species could recover if vole herbivory were removed, access treatments were reversed at the end of the 2004 growing season and monitored through 2007. Repeated measures ANOVA demonstrated dramatic vole suppression of established E. virginicus, but not D. canadense, indicating continuing vulnerability of the grass but not of the adult legume. Release from vole herbivory resulted in re-growth of rye, but not tick-trefoil, which was apparently suppressed by established vegetation. Two additional common planted species did not respond to treatment reversal, nor did 11 much less common planted species that comprised a minor portion of the vegetation. Dominant perennial black-eyed Susan Rudbeckia subtomentosa (Asteraceae) did not change in plant numbers by year or treatment, but expanded or contracted in stems per plant and cover as E. virginicus was suppressed or released by vole herbivory or its absence. Results indicate that preferred food plants may persist through capacity to quickly recover during periods of relative vole scarcity, or reach a refuge in maturity.  相似文献   

14.
1. We studied the relative role of local habitat variables and landscape pattern on vole–plant interactions in a system with grey-sided voles ( Clethrionomys rufocanus (Sund.)) and their favourite winter food plant, bilberry ( Vaccinium myrtillus L.). The study was conducted during a vole peak year (1992–93) in a tundra area in northern Norway.
2. Using Mantel statistics we were able to separate the direct effects of the spatial patterning of habitats and the indirect effects due to spatial aggregations of similar habitats.
3. Results indicate that knowledge about the explicit spatial patterning of patches does not improve our understanding of the system. Instead, two local factors, vegetation height and bilberry biomass, explained more than 50% of the variation in cutting intensity in winter (defined as the proportion of above-ground shoots cut). Increasing vegetation height increased, and increasing bilberry biomass decreased, the cutting intensity.
4. The conclusion that grey-sided voles are able to distribute themselves relative to habitat quality was also partially supported by our estimated over-winter persistence by voles in the various habitats. Vole persistence was uncorrelated with vegetation height, the important predictor of autumn vole density, but tended to correlate with the deviation from the relation between vegetation height and autumn vole density. This conforms to the expectations from the theory of ideal-free habitat distribution.
5. The cue for vole habitat choice, i.e. vegetation height, indicates that either predation or freezing risk is important for voles when selecting over-wintering habitat.  相似文献   

15.
Phase dependence in winter physiological condition of cyclic voles   总被引:4,自引:0,他引:4  
Lack of food resources has been suggested as a factor which limits the growth of cyclic vole populations. During peak phases of the cycle, vole population growth typically ceases during late autumn or early winter, and is followed by a decrease in density over the winter. To investigate whether this decrease is due to increased mortality induced by a depletion of food resources, we studied overwinter food consumption and physiological condition of field voles ( Microtus agrestis ) in western Finland in both an increase and a decrease phase of a three-year population cycle. The growth rate of vole populations was negatively related both to prevailing vole densities and to densities six months earlier. The condition index of voles, as well as their blood levels of haematocrit, proteins, free fatty acids and immunoglobulin G, were positively related to population growth rate when populations were declining. When populations were increasing, these parameters tended to be negatively related to population growth rate. The overall physiological condition of voles was lower in the winter of the decrease phase as compared to the increase phase. The return rate of voles, a proxy of survival, was also lower in the decrease than in the increase phase of the cycle and positively related to haematocrit levels. Almost 90% of all green vegetation shoots were consumed by voles during the winter of the decrease phase while only two thirds were eaten in the increase phase. Our results suggest that the winter decrease phase of cyclic vole populations is associated with both a deterioration in the physiological condition of voles and a significant depletion of winter food resources. This implies that malnutrition induces poor physiological condition in voles, which in turn may increase mortality either directly through starvation or indirectly through increased susceptibility to predators and pathogens.  相似文献   

16.
布氏田鼠数量和空间分布的年际动态及周期性初步分析   总被引:5,自引:1,他引:5  
布氏田鼠的分布特点是避开山丘,季节河河床和芨芨草滩;主要分布在季节河两侧,分布区缩小时,向季节河两侧收缩,布氏田鼠年动态是否有周期性尚难以下最后的结论,但存在季节动态是可以肯定的,布氏田鼠在其地理分布中心区和边缘区的种群年际动态可能存在差异,中心区的种群动态相对可能稳定些,边缘区的种群波动可能大些。  相似文献   

17.
The bank voleMyodes glareolus Schreber, 1780 is a widely distributed rodent in Europe, being numerically dominant in small mammal communities living in temperate woodlands. However, it becomes scarce in southern Europe (Mediterranean area) where it reaches the southernmost limit of its distribution range. We studied the habitat preferences of bank voles in 9 plots in a transitional area between Mediterranean and Eurosiberian regions within a Mediterranean mountain. During the study period we captured 1919 small mammals of 9 species, including 287 bank voles (14.95%). Mean density ranged from zero individuals per plot (1.1 ha) at the boreo-subalpine scrubland to 10.27 ± 2.84 (SE) at a Mediterranean river woodland. Statistical path analysis was used to investigate relationships between mean bank vole density and climate and vegetation structure measured within plots. The variables selected by the structural equation model were those related to forest structure, like tree cover and height, dead vegetation, moss, and rock cover. Habitat moisture was also important (microclimatic conditions). Mean climate conditions (and elevation) did not have any significant effect on mean bank vole density, and no significant association with understorey vegetation (eg shrub and herbaceous cover) was observed. Our results pointed out that bank voles were habitat specialists in our study area, being more abundant and frequent in moist woodlands, and rare or absent in shrublands and grasslands.  相似文献   

18.
Water voles have suffered large population declines in the United Kingdom due to habitat degradation and predation by invasive American mink. Habitat restoration of floodplain wetlands could help to reverse this decline, but the detailed habitat preferences of water voles in these environments have not been well studied, and the impacts of restoration practices on water vole populations are not known. This study investigated the habitat preferences of water voles in a reconnected lowland river floodplain. The results show that water voles preferred wider water bodies, and taller and more diverse vegetation. The impact of flooding on water voles was also investigated by comparing their occurrence between two survey periods which were separated by large flood events, and by comparing distribution patterns before and after restoration. Contrary to previous reports, there was no observed negative impact of flood events on water vole distribution, which has slightly expanded since the floodplain was reconnected to the river in 2009. Overall this study demonstrates that restored wetlands can provide suitable habitat for water voles, and provides guidance on some of the factors which should be considered when designing floodplains for water vole conservation.  相似文献   

19.
The Cabrera vole (Microtus cabrerae) is a threatened rodent endemic in the Iberian Peninsula with a patchy distribution and specific microhabitat requirements. This aim of this study was to document the composition of plant communities in habitats of Cabrera vole colonies in southern Portugal. Differences observed in plant species composition were also compared with vegetation structure, taxonomic and life form groups, species and group diversity, disturbance, topography and soil properties. Vegetation was sampled between March and July 2004, in 26 colonies occurring in five geographical areas. Grasses were the most abundant, common and diverse family in the colonies, and the perennial grass Agrostis castellana was present in 92% of colonies, with a mean cover of 16% of the site. Other frequently occurring species were Briza maxima (85%), Vulpia myuros (85%), Gaudinia fragilis (81%), Leontodon spp. (81%), Avena barbata (77%), Bromus hordeaceus (77%) and Tolpis barbata (77%). Colonies were classified in eight vegetation groups that included meadows, tall perennial grasslands, manured meadows with tall sedges, annual grasslands and ruderal and nitrophilous grasslands. Main gradients associated with composition differences were grass richness, annual and perennial grass cover, vegetation structure (herbaceous vegetation height), soil properties (texture and moisture), disturbance (ruderal species) and colony dimensions (area). Results suggest that the Cabrera vole is able to exploit a wide variety of grasslands, with a varying degree of ecological disturbance. Meadows and perennial grassland communities seem to be higher-quality microhabitats for voles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号