首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
The hormonally active form of vitamin D, 1,25-dihydroxy vitamin D3, is known to induce in the intestine and kidney of chicks the synthesis of a calcium-binding protein (CaBP). Here we report a correlation between the tissue levels of CaBP and the levels of apparent messenger RNA in total polysomes as determined by the vitamin D and dietary calcium status. Polysomes from pooled duodenal mucosa and kidney were prepared by the Mg2+ precipitation method. After translation in a heterologous, rabbit nuclease-treated reticulocyte system, the immunoprecipitated pellet of CaBP was dissolved and the proteins were separated on 10% sodium dodecyl sulfate-polyacrylamide gels. When 13 nmol of D3 was given to 4-week-old rachitic chicks which were sacrificed 48 h later, it was found that the duodenum had eightfold more apparent mRNA for CaBP in the polysomes than the kidney. This was also reflected in the values of CaBP/mg protein in these tissues (duodenum, 7 μg/mg vs kidney, 0.9 μ/mg). Also, after giving D3, there was a twofold increase in both apparent mRNA levels in the polysomes and in CaBP levels in the duodena of chicks which were raised on low-calcium diets versus chicks raised on high-calcium diets. While apparent mRNA for CaBP was present in polysomes from rachitic chick kidney, it was not detectable in the duodenum. From these studies it appears that the induction of CaBP by 1,25(OH)2D3 in both the intestine and kidney is determined by similar control mechanisms.  相似文献   

2.
An apparatus is described that allows perfusion of a non-everted segment of intestine in vitro and the study of the accumulation of substances within the mucosal cells. The translocation of Ca(2+) by rachitic-chick ileum and the effect of pretreatment with cholecalciferol was investigated, with the following conclusions. (1) Entry of Ca(2+) across the microvilli into mucosal cells is by diffusion; it does not require metabolic energy or the presence of any other inorganic ions. (2) Pretreatment of the chick with cholecalciferol causes increased permeability of the microvillus to Ca(2+) in both directions (lumen to cell, cell to lumen). The increased transport brought about by cholecalciferol in vivo can be partially mimicked by sodium dodecyl sulphate added in vitro. (3) The sign and the magnitude of the electrical potential difference prevailing across the ileum does not influence Ca(2+) transport. (4) Exit of Ca(2+) from the mucosal cell is temperature-sensitive, requires metabolic energy and Na(+). (5) Pretreatment with cholecalciferol caused increased movement of Ca(2+) out of the cell across the basement membranes. This effect of cholecalciferol given in vivo could be markedly increased by the presence of dicyclohexylcarbodi-imide in the perfusion fluid. These observations suggested that cholecalciferol increased Ca(2+) entry (and exit) at the mucosal surface and also caused Ca(2+) to be more available to the pump at the serosal surface.  相似文献   

3.
Calcium binding protein (CaBP) was localized by the indirect peroxidase-labeled antibody method in chick duodenum 72 hr after administering 32.5 nmol of cholecalciferol to vitamin D-deficient chicks. CaBP was observed in cytoplasm and nuclei of absorptive cells but was absent from goblet cells. Our results are consistent with the suggested functional role for CaBP in the prevention of intracellular accumulation of calcium by preventing mitochondrial accumulation of calcium, enhancing removal of calcium from absorptive cells, and/or preventing the "leaking" of calcium into cells through the lateral borders. They are not consistent with an extracellular functional role for CaBP.  相似文献   

4.
Vitamin D3 and its biologically active metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are shown to induce in the chick intestine and kidney the biosynthesis of a calcium binding protein (CaBP). In vitamin D3-replete chickens raised under adequate dietary calcium (Ca) and phosphorus (P) conditions, the steady-state level of intestinal CaBP (30–50 g/mg protein) is 5- to 20-fold greater than that of renal CaBP. Whereas dietary phosphorus restriction is known to elevate both intestinal and renal CaBP levels, dietary calcium restriction elevates only intestinal CaBP. The present study reports the rates of biosynthesis in vivo and in vitro, and of biodegradation in vivo, of both intestinal and renal CaBP after administration of vitamin D3 or 1,25(OH)2D3 to rachitic chicks. The apparent rate constant of degradation for intestinal CaBP was 0.024 h?1 (t12 = 29 h) and that for renal CaBP was 0.019 h?1 (t12 = 36 h) while total cellular soluble protein in the intestine and kidney had half-lives of 43 and 70 h, respectively. The time course of induction of the synthesis of CaBP was determined in intestine and kidney after administration of a physiological dose of 1,25(OH)2D3 to rachitic chicks. Intestinal CaBP synthesis was detectable by 3 hours, reached a maximal rate by 10 hours, and sharply decayed by 16–20 hours. The time course of induction of renal CaBP synthesis was very similar, although the rate of renal CaBP synthesis was readily detectable at the initial time of administration of 1,25(OH)2D3. The relative rates of synthesis of CaBP in the intestine and kidney under a variety of dietary Ca and P conditions in the vitamin D3-replete chick exactly paralleled the steady-state level of CaBP in these two tissues. These results are consistent with a model in which the steady-state levels of intestinal and renal CaBP are solely determined by their respective rates of biosynthesis; the CaBP biosynthetic capability, in turn, is regulated by the availability of 1,25(OH)2D3 to each target organ.  相似文献   

5.
Administration of vitamin D3 or 1,25 (OH)2D3 to rachitic chicks produces a decrease of 45Ca uptake by mitochondria from intestinal mucosa. This effect of vitamin D3 shows tissue specificity, since it was not observed in liver mitochondria from the same animals. The Km values were similar (about 10 microM) for intestinal mitochondria from rachitic and treated animals. The Ca2+ efflux in previously loaded mitochondria was not changed by treatment. The Ca content of recently isolated mitochondria was strikingly lower after vitamin D3 administration. It is concluded that vitamin D3 may participate in the mechanism which regulates the intramitochondrial Ca concentration.  相似文献   

6.
The vitamin D-induced calcium-binding protein (CaBP) was localized in histological sections of chick duodenum using the peroxidase-antiperoxidase immunocytochemical technique. The time-course of appearance of CaBP in rachitic chicks was investigated from 0 to 120 hr after stimulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). CaBP was not routinely detected at 0 hr after 1,25(OH)2D3 administration. CaBP was first noted in some, but not all, of the samples taken 2 hr following 1,25(OH)2D3 and was detected in all 2 1/2 hr samples. The number of CaBP-containing absorptive cells and the apparent CaBP concentration both increased to a maximum at about 16-24 hr. At later times, as CaBP free cells migrated up the villi, the CaBP-containing cells decreased in number, but even at 120 hr post 1,25(OH)2D3 dose there were significant numbers of CaBP-containing cells present. The relationships between time-course of CaBP location on intestinal villi, enterocyte migration rates, and the time-course of 1,25(OH)2D3 stimulated intestinal calcium transport are discussed.  相似文献   

7.
[1,2-(3)H(2)]Cholecalciferol has been synthesized with a specific radioactivity of 508mCi/mmol by using tristriphenylphosphinerhodium chloride, the homogeneous hydrogen catalyst. With doses of 125ng (5i.u.) of [4-(14)C,1-(3)H(2)]cholecalciferol the tissue distribution in rachitic rats of cholecalciferol and its metabolites (25-hydroxycholecalciferol and peak P material) was similar to that found in chicken with 500ng doses of the double-labelled vitamin. The only exceptions were rat kidney, with a very high concentration of vitamin D, and rat blood, with a higher proportion of peak P material, containing a substance formed from vitamin D with the loss of hydrogen from C-1. Substance P formed from [4-(14)C,1,2-(3)H(2)]cholecalciferol retained 36% of (3)H, the amount expected from its distribution between C-1 and C-2, the (3)H at C-1 being lost. 25-Hydroxycholecalciferol does not seem to have any specific intracellular localization within the intestine of rachitic chicks. The (3)H-deficient substance P was present in the intestine and bone 1h after a dose of vitamin D and 30min after 25-hydroxycholecalciferol. There was very little 25-hydroxycholecalciferol in intestine at any time-interval, but bone and blood continued to take it up over the 8h experimental period. It is suggested that the intestinal (3)H-deficient substance P originates from outside this tissue. The polar metabolite found in blood and which has retained its (3)H at C-1 is not a precursor of the intestinal (3)H-deficient substance P.  相似文献   

8.
The biochemical properties of a chick pancreatic calcium binding protein (CaBP) and its response to vitamin D status and dietary calcium and phosphorus levels were studied and compared with the known vitamin D-dependent CaBPs present in the chick intestine and kidney. Pancreatic CaBP is homologous to the intestinal CaBP on the basis of immunological cross-reactivity, molecular size (28,200 Da), and charge properties (chromatographic mobility on DEAE-Sephadex in the presence of either EDTA or Ca2+). Pancreatic levels of CaBP respond to changes in vitamin D status and dietary Ca and P level in a fashion similar to the intestinal CaBP. Thus, in the absence of dietary vitamin D, both pancreatic and intestinal CaBPs were essentially undetectable, while in the presence of dietary vitamin D, a low dietary P (0.05%) elevated the pancreatic and intestinal CaBP 1.5X and 1.6X, respectively, compared to the CaBP levels present with normal dietary Ca and P (1.0%, 1.0%). The tissue levels of pancreatic CaBP (6-10 ng/mg protein) are about 0.2% of the intestine (5000 ng/mg protein) and 1% of the kidney CaBP (700 ng/mg protein). However, when corrections are made for the CaBP distribution in the tissues and expressed as CaBP concentration per CaBP-containing cells, the pancreatic CaBP level was 30% of the intestine and 10% of the kidney. Collectively, these results suggest that the chick pancreatic vitamin D-dependent CaBP is a homologous protein to the intestinal CaBP, both with regards to its relative cellular concentration as well as in its response to changing dietary levels of Ca and P.  相似文献   

9.
10.
Treatment with cholecalciferol or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) increases activity and changes electrophoretic mobility of alkaline phosphatase (alkPase) from duodenal brush border of vitamin D-deprived chicks. Three of the four molecular forms of the enzyme show reduced velocity of migration 9 h after 1,25(OH)2D3 or 24 h after vitamin D3. This change is reversed about 48 h later, when mobility of those bands is higher than that of controls. Incubation of enzyme preparations with exogenous neuraminidase produces the same electrophoretic modifications observed during the early stage, indicating that they are due to desialylation. Cholecalciferol or 1,25(OH)2D3 increase sialidase activity of duodenal brush border. This increment precedes that of alkPase and could account for the initial desialylation and moderate rise of alkPase. Cycloheximide markedly reduces alkPase in rachitic chicks and blocks the increase of the enzyme activity produced by vitamin D3, but does not modify the rise of sialidase or the reduction of alkPase electrophoretic mobility. The bimodal response of alkPase to 1,25(OH)2D3 or cholecalciferol comprises two different mechanisms: during a first stage, epigenetic modifications of preexisting enzyme can be triggered by the increased Ca2+ levels; in a second phase, there is activation of enzyme synthesis.  相似文献   

11.
Epithelial cells in the human small intestine express meprin, an astacin-like metalloprotease, which accumulates normally at the brush border membrane and in the gut lumen. Therefore, meprin is targeted towards luminal components. In coeliac disease patients, peptides from ingested cereals trigger mucosal inflammation in the small intestine, disrupting epithelial cell differentiation and function. Using in situ hybridisation on duodenal tissue sections, we observed a marked shift of meprin mRNA expression from epithelial cells, the predominant expression site in normal mucosa, to lamina propria leukocytes in coeliac disease. Meprin thereby gains access to the substrate repertoire present beneath the epithelium.  相似文献   

12.
Injection of 1,25 dihydroxycholecalciferol (1,25(OH)2D3, 10 micrograms) directly into the in situ ligated duodenal loop of rachitic chicks significantly elevated the tissue accumulation of 47Ca within 20-30 min. The transfer of 47Ca from lumen to blood, during the same time period, was not increased nor was there any measurable intestinal calcium-binding protein synthesized. Lesser amounts of 1,25(OH)2D3 (1 or 5 micrograms) did not result in any statistically significant elevation of 47Ca tissue accumulation, nor did they have any effect on 47Ca transfer from lumen to blood (transmural). Ten micrograms of 1,24R,25(OH)3D3 was similarly effective in elevating tissue accumulation, whereas 24R,25(OH)2D3 and 25(OH)D3 were not. These results provide additional evidence for an early and direct action of 1,25(OH)2D3 in altering intestinal epithelial membrane transport prior to the induction of synthesis of specific transport proteins.  相似文献   

13.
Measurements were made of duodenal calcium-binding protein (CaBP) on rats during development of rickets and, subsequently, following vitamin-D2 treatment. Results showed a poor inverse correlation between duodenal CaBP and rickets. In rats fed a phosphate-deficient rachitogenic diet, duodenal CaBP concentration finally fell below detectable limits, but CaBP was still readily measurable 2 weeks after rickets was clearly established. Following a massive dose of vitamin D2 (50 000 I.U.) to rachitic animals, CaBP was formed. However, a small dose of vitamin D2 (500 I.U. daily for 4 days) was insufficient to demonstrate CaBP synthesis than vitamin-D treatment alone. The rachitogenic diet supplemented with phosphate, which caused osteoporosis but not rickets, inhibited CaBP synthesis. The results suggest that nutritional deficiencies from the rachitogenic diet, in addition to vitamin-D deficiency, inhibited CaBP synthesis.  相似文献   

14.
The vitamin D-dependent calcium binding protein (CaBP) of chick duodenum has been localized by immunocytochemistry and by radioimmunoassay. Light microscopically, CaBP was seen to be present in the absorptive cells of the villi while in other cell types of the villi and the crypts, including goblet cells and endocrine cells, no CaBP was seen. At the electron microscopic level, CaBP was shown to be localized in the cytosol and the euchromatin of the nucleus but not in membrane-bounded cytoplasmic compartments. Quantitative evaluation of the immunocytochemical protein A-gold label showed that the terminal web and the cytosol of basal cellular regions were most highly labeled while the brush border was weakly labeled. The radioimmunoassay evaluation of intestinal subcellular fractions indicated that 96% of the homogenate CaBP is in the cytosol high-speed supernatant fraction. Collectively, these results support the hypothesis that the vitamin D- dependent intestinal CaBP may play a role in either regulation of intracellular calcium concentration or movement of calcium across the brush border membrane from the gut lumen.  相似文献   

15.
Calbindin-D28k (CaBP) is a calcium-binding protein found in specific neuronal populations in the mammalian brain that, as a result of its proposed calcium-buffering action, may protect neurons against potentially harmful increases in intracellular calcium. We have stably transfected HEK 293 cells with recombinant human CaBP in order to determine the influence of this protein upon transient increases in intracellular ionic calcium concentration ([Ca(2+)](i)) induced either by transient transfection of the NR1 and NR2A subunits of the N-methyl-D-aspartate (NMDA) receptor and brief exposure to glutamate, photolysis of the caged calcium compound NP-EGTA, or exposure to the Ca(2+)]-ionophore 4-Br-A23187. The presence of CaBP did not significantly reduce the peak [Ca(2+)](i)stimulated by glutamate activation of NMDA receptors but significantly prolonged the recovery to baseline values. Flash photolysis of NP-EGTA in control cells resulted in an almost instantaneous increase in [Ca(2+)](i)followed by a bi-exponential recovery to baseline values. In cells stably expressing CaBP, the peak [Ca(2+)](i)levels were not statistically different from the controls, however, there was a significant prolongation of the initial portion of the slow recovery phase. In cells exposed to 4-Br-A23187, the presence of CaBP significantly reduced the rate of rise of [Ca(2+)](i), reduced the peak response, slowed the rate of recovery, and reduced the depolarization of mitochondria. In studies of delayed, Ca(2+)]-dependent cell death, CaBP transfected cells exhibited enhanced survival 24h after a 1-h exposure to 200 microM NMDA. However, necrotic cell death observed after the first 6h was not prevented by the presence of CaBP. These results provide direct evidence for a Ca(2+)-buffering effect of CaBP which serves to limit Ca(2+)entry and the depolarization of mitochondria, thereby protecting cells from death mediated most likely by apoptosis.  相似文献   

16.
The role of 24,25(OH)2D3 in calcium homeostasis is still controversial. In the present study the administration of low doses of 1,25(OH)2D3 and of higher doses of 24,25(OH)2D3 either alone or in conjunction with each other, were studied in rachitic chicks and in Japanese quails. Whereas 24,25(OH)2D3 alone had no significant effect on duodenal CaBP and on alkaline phosphatase in chick serum, it increased the influence of 1,25(OH)2D3 on these two parameters strongly. Also, when 1,25(OH)2D3 and 24,25(OH)2D3 were given simultaneously to Japanese quails, calcium excretion via the egg shell was clearly higher than when either metabolite had been administered alone. These results indicate that 1,25(OH)2D3 and 24,25(OH)2D3 exert a strong synergistic effect in rachitic animals.  相似文献   

17.
18.
Several proteins from various animal tissues with possible transport function have been briefly described, with emphasis given to a vitamin D-induced calcium-binding protein (CaBP) implicated in calcium translocation across epithelial membranes. The latter protein was shown to be present in the small intestine, colon, kidney, and the uterus (shell gland) of the chicken. CaBP was also found in the small intestine of the rat, dog, bovine, and monkey. This protein has been isolated in high purity from chick intestinal mucosa and some of its properties determined. Its molecular weight is about 28,000, its formation constant, about 2.6 x 105 M-1, and its binding capacity, 1 calcium atom per protein molecule. Correlative studies have shown that CaBP concentration in intestinal mucosa varies with the calcium absorptive capacity of the gut, thereby suggesting that CaBP is intimately involved in the process of calcium absorption. CaBP has been localized in the brush border region of the intestinal absorptive cell and within goblet cells. Among other proteins mentioned were the intrinsic factor required for vitamin B12 absorption and the protein(s) associated with iron translocation.  相似文献   

19.
Radioactively labelled cholecalciferol was administered continuously to chicks that were fed normal, low-calcium and low-phosphorus diets. It has been possible to show that under such steady state conditions with regard to cholecalciferol, and mineral restriction, the animal reacts by increased accumulation of 1,25-dihydroxycholecalciferol in the intestinal and the kidney cell, which was associated in the intestine with an increased calcium-binding activity. A similar accumulation of 1,25-dihydroxycholecalciferol in bone was not noticed.It is proposed that the intestine and the kidney, but not bone, are the main target organs for cholecalciferol in the maintenance of calcium homeostasis, and that both calcium and phosphorus play a role in the regulation of the formation and subsequent function of 1,25-dihydroxycholecalciferol.  相似文献   

20.
The administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to rachitic chicks produces an increase in (a) RNA and protein synthesis, (b) calcium binding protein (CaBP) concentration, and (c) alkaline phosphatase activity in the duodenum. These events occur concomitantly with enhanced calcium transport. We inhibited RNA and protein synthesis in richitic chicks and measured the subsequent response to 1,25(OH)2D3. Actinomycin D, injected prior to and following 1,25(OH)2D3 administration, inhibited intestinal RNA polymerase activity, blocked the rise in serum calcium, reduced the amount of CaBP, and increased alkaline phosphatase activity. Cycloheximide injected in similar fashion, inhibited the 1,25(OH)2D3-mediated increase in intestinal protein synthesis, serum calcium, CaBP, and alkaline phosphatase activity. Neither inhibitor blocked the ability of 1,25(OH)2D3 to stimulate calcium transport as measured in isolated duodenal loops in vivo. The ability of either inhibitor to block 1,25(OH)2D3-mediated calcium transport despite inhibition of CaBP production and alkaline phosphatase activity (by cycloheximide) indicates that de novo RNA and protein synthesis, and in particular CaBP and alkaline phosphatase, are not required for the 1,25(OH)2D3 stimulation of calcium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号