首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of drug-membrane interactions of erythrocytes from neonates were compared with those from adults by monitoring the time course of the shape transformations and vesicle release caused by drugs, using a light microscope--video recording technique. Both crenation caused by lysophosphatidylcholine (LPC) and cupping caused by chlorpromazine (CPZ) took place more slowly in the neonatal cells than in the cells from adults. The equilibrium concentrations of LPC and CPZ in erythrocytes did not differ significantly between the neonates and adults, however. The slower responses of the neonatal erythrocytes can be explained by the presence of negatively charged phosphatidylethanolamine and phosphatidylserine in the outer layer of the erythrocyte membrane, which may reduce the rate of incorporation of amphipathic LPC and attract cationic CPZ to remain in the outer membrane layer, lowering the rate of inward bending of the membrane normally caused by CPZ.  相似文献   

2.
The effect of chlorpromazine (CPZ) on the shape of human erythrocytes with different values of transmembrane potential (TMP) was investigated. The shape of red blood cells with negative values of the TMP remained unchanged after the formation of stomatocytes by chlorpromazine, while cells with positive TMP showed a characteristic time course of shape change during the incubation with CPZ. Experiments with vanadate show that this might be due to a difference in the activity of the phospholipid-translocase at different values of TMP.  相似文献   

3.
Treatment of normal, disc-shaped rabbit platelets with lysophosphatidylcholine and chlorpromazine induced respectively spine formation and spherical transformation. In similar concentration ranges to those in which they induced these morphological changes, the drugs suppressed a series of events triggered by thrombin: pseudopod formation, arachidonate release from the membrane phospholipids, and aggregation. Washing the drug-treated platelets reversed the morphological changes and abolished the inhibitory effect on aggregation. These observations suggest that amphiphilic drugs perturb the plasma membrane structure of platelets, inducing the membrane shape change and inhibiting the stimulus-induced aggregation.  相似文献   

4.
The binding of chlorpromazine · HCl at the human erythrocyte surface has been detected through its effect on cellular electrophoretic mobility. Incubation of erythrocytes (approx. 5 · 106/ml) in 23 μM chlorpromazine · HCl resulted in a reduction of negative electrophoretic mobility from the control value of ?1.11 ± 0.01 (μm · s?1)/(V · cm?1) to ?1.00 ± 0.02 (μm · s?1)/(V · cm?1) (pH 7.2, ionic strength 0.155). This mobility change was completely reversed when chlorpromazine · HCl was removed by centrifugal washing. Increasing the drug concentration to 70μM did not affect the mobility change, indicating saturation of the electrophoretically detectable drug binding sites over chlorpromazine · HCl concentration range studied here. The effect of the 23 μM chlorpromazine · HCl on electrophoretic mobility was also measured in isotonic media of reduced ionic strength. The drug-induced reduction in negative surface charge density was found to be independent of ionic strength over the range 0.155 (Debye length, 0.8 nm) to 0.00310 (Debye length, 5.7 nm).Fixation of erythrocytes with glutaraldehyde affected neither the normal electrophoretic mobility of discocytes nor the reduced electrophoretic mobility of chlorpromazine · HCl-induced stomatocytes. When these stomatocytes were first fixed with glutaraldehyde, then washed free of chlorpromazine · HCl, they retained the stomatocyte form while regaining a normal control electrophoretic mobility. Conversely, when discocytes fixed in that form were treated with chlorpromazine · HCl, they showed the same mobility change as did fixed or unfixed stomatocytes. The drug-induced mobility change is therefore independent of the shape change, but reflects a contribution to cellular surface charge density from the membrane-bound chlorpromazine · HCl molecules. From the charge reduction, it is estimated that about 106 chlorpromazine · HCl molecules are bound at the electrokinetic cell surface and occupy approximately 0.4% of the total surface area.  相似文献   

5.
The influence of chlorpromazine (CPZ) on the transverse mobility of spin-labeled phospholipids incorporated into human erythrocytes was investigated by electron spin resonance. The very slow transverse diffusion of phosphatidylcholine, as well as the absence of transverse mobility of sphingomyelin were not modified even by sublytic concentrations (approximately equal to 1 mM) of CPZ. On the other hand, the rapid outside-inside translocation of the aminophospholipids (Seigneuret and Devaux (1984) Proc. Natl. Acad. Sci. USA 81, 3751-3755), was slightly hindered in CPZ containing membranes. If the spin-labeled aminolipids were incorporated in erythrocytes and allowed to flip to the inner monolayer before CPZ addition, a fraction of the spin labels (10-15%) flipped back instantaneously from the inner to the outer leaflet, upon incubation with CPZ. Similar experiments carried out with spin-labeled phosphatidylcholine and spin-labeled sphingomyelin showed that a fraction of the spin-labeled choline derivatives flip instantaneously to the inner leaflet if CPZ was added after the spin labels. Addition of lysophosphatidylcholine had no effect on the spin-labeled phospholipid redistribution nor on their transmembrane mobility. We interpret the immediate effect of CPZ addition as being due to a reorganization of the bilayer accompanying the rapid CPZ membrane penetration, phenomenon which is independent of the CPZ effect on the steady-state activity of the 'aminophospholipid translocase', the latter effect being probably a direct CPZ-protein interaction. By comparison of the time course of phosphatidylserine transverse diffusion in control discocyte cells and in CPZ-induced stomatocytes, we infer that the difference in cell shape is not a major factor in the regulation of the active inward transport of aminophospholipids in human erythrocytes.  相似文献   

6.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

7.
Factors of the shape change of human erythrocytes induced with lidocaine   总被引:1,自引:0,他引:1  
We studied the molecular mechanism of the shape change of erythrocytes with a local anesthetic, lidocaine. The shape of human erythrocytes changed from discocytes to stomatocytes in the presence of lidocaine when ATP was present. But, the shape of resealed cells which were prepared with 10 mM Tris-HCl buffer (pH 7.4) containing 2 mM ATP-MgCl2 and various substances was not changed from discocytes to stomatocytes with lidocaine. When intact cells and resealed cells which were prepared with various concentrations of Tris-HCl buffer (pH 7.4) were incubated with various concentrations of lidocaine and their membrane proteins were analyzed by SDS-PAGE, the densities of bands 62K, 28K and 22K depended on lidocaine concentration: in particular, that of band 28K changed remarkably. These membranous 62K-, 28K- and 22K-proteins agreed with cytoplasmic 62K-, 28K- and 22K-proteins in molecular weight. We propose that not only ATP but also the 62K-, 28K- and 22K-proteins in the cytoplasm are concerned with the shape change of human erythrocytes induced with lidocaine.  相似文献   

8.
(1) Treatment of erythrocytes with phospholipase A2 from bee venom cleaves about 55% of the phosphatidylcholine in the outer membrane lipid layer without changing the discoid shape of the cells. All of the fatty acids and 80% of the lysophosphatidylcholine produced under this conditions can be sequentially extracted by bovine serum albumin without hemolysis of the cells. (2) The cells remain discoid up to extraction of all of the fatty acids and 15% of the lysophosphatidylcholine. Removal of a higher fraction of lysophosphatidylcholine induces formation of stomatocytes and sphero-stomatocytes, probably going along with an internalization of membrane vesicles. Stomatocytosis can be explained on the basis of the ‘bilayer couple hypothesis’ (Sheetz, M.P. and Singer, S.J. (1974) Proc. Natl. Acad. Sci. 71, 4457–4461). The shape change will compensate for the differences in surface pressure between the two leaflets induced by selective removal of material from the outer leaf of the bilayer. (3) Increasing the shear modulus of the membrane by diamide prevents this compensatory shape change even after extraction of up to 80% of the lysophosphatidylcholine, which amounts to a loss of 34% of the phospholipids of the outer membrane layer or 22% of its area. This leads to the interesting situation of a membrane possibly having a strikingly diminished ratio of the numbers of phospholipid molecules in the outer to that in the inner lipid layer. A marked difference in surface pressures should arise in this situation, unless other compensatory mechanisms become operative. Evidence for a compensation for outer lipid loss by a constriction of the inner layer has been obtained. A compensation by transbilayer reorientation of phospholipids could not be demonstrated. This latter observation supports the concept of a stabilisation of the asymmetric phospholipid arrangement by proteins such as spectrin.  相似文献   

9.
The structural effects of Hg(II) ions on the erythrocyte membrane were studied through the interactions of HgCl2 with human erythrocytes and their isolated resealed membranes. Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Hg(II) induced shape changes in erythrocytes, which took the form of echinocytes and stomatocytes. This finding means that Hg(II) locates in both the outer and inner monolayers of the erythrocyte membrane. Fluorescence spectroscopy results indicate strong interactions of Hg(II) ions with phospholipid amino groups, which also affected the packing of the lipid acyl chains at the deep hydrophobic core of the membrane. HgCl2 also interacted with bilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that Hg(II) ions induced molecular disorder to both phospholipid bilayers, while fluorescence spectroscopy of dimyristoylphosphatidylcholine large unilamellar vesicles confirmed the interaction of Hg(II) ions with the lipid polar head groups. All these findings point to the important role of the phospholipid bilayers in the interaction of Hg(II) on cell membranes.  相似文献   

10.
Shape transformations induced by amphiphiles in erythrocytes   总被引:4,自引:0,他引:4  
Shape alterations induced in human erythrocytes by cationic, anionic, zwitterionic and nonionic amphiphiles (C10-C16) at antihaemolytic concentrations (CAH50 and CAHmax) and at a slightly lytic concentration (2-10% haemolysis) were studied. Anionic (sodium alkyl sulphates) and zwitterionic amphiphiles (3-(alkyldimethylammonio)-1-propanesulfonates) proved to be potent echinocytogenic agents. Among the nonionic amphiphiles there were potent stomatocytogenicagents (octaethyleneglycol alkyl ethers, pentaethyleneglycol dodecyl ether), one potent echinocytogenic agent (dodecyl D-maltoside) and one weak echinocytogenic agent (decyl beta-D-glucopyranoside). Shape alterations induced by cationic amphiphiles (alkyltrimethylammonium bromides, cetylpyridinium chloride and dodecylamine hydrochloride) showed a strong time-dependence. These amphiphiles immediately induced strongly crenated erythrocytes which during incubation shifted to less crenated erythrocytes or to stomatocytes. All of the echinocytogenic amphiphiles induced echinocytes immediately, and there were only small alterations of the induced shape during incubation. Among the stomatocytogenic amphiphiles there were some that induced stomatocytes immediately or after a short lag time while others first passed the erythrocytes through echinocytic stages before stomatocytic shapes were attained. Erythrocytes treated with amphiphiles did not recover their normal discoid shape following repeated washing and reincubation for 1 h in amphiphile-free medium. Our study shows that shape alterations induced by amphiphiles in erythrocytes cannot be explained solely by assuming a selective intercalation of differently charged amphiphiles into the monolayers of the lipid bilayer as suggested in the bilayer couple hypothesis (Sheetz, M.P. and Singer, S.J. (1976) J. Cell Biol. 70, 247-251). We suggest that amphiphiles, when intercalated into the lipid bilayer, trigger a rapid formation of intrabilayer non-bilayer phases which protect the bilayer against a collapse and bring about a transbilayer redistribution of intercalated amphiphiles as well as of bilayer lipids.  相似文献   

11.
Membrane-perturbing agents that cause transformation of biconcave erythrocytes into echinocytes or stomatocytes were used to investigate the influence of erythrocyte shape on the rate of Ca2+-induced scrambling of phospholipids. Erythrocytes were treated with a variety of lipid-soluble compounds to induce these shape changes, followed by incubation with calcium and ionomycin to activate lipid scramblase. Prothrombinase activity of the cells was used to monitor the rate of surface exposure of phosphatidylserine, which is taken as a measure of scramblase activity. Echinocytes show an enhanced rate of scrambling, whereas stomatocytes show a reduced rate, relative to normocytes. This phenomenon appears to correlate with enhanced and diminished micro-exovesicle shedding from echinocytes and stomatocytes, respectively. It is concluded that the rate of calcium-induced phosphatidylserine exposure (rate of lipid scrambling) in erythrocytes depends for a considerable part on the cells' ability to form microvesicles.  相似文献   

12.
Membrane-perturbing agents that cause transformation of biconcave erythrocytes into echinocytes or stomatocytes were used to investigate the influence of erythrocyte shape on the rate of Ca(2+)-induced scrambling of phospholipids. Erythrocytes were treated with a variety of lipid-soluble compounds to induce these shape changes, followed by incubation with calcium and ionomycin to activate lipid scramblase. Prothrombinase activity of the cells was used to monitor the rate of surface exposure of phosphatidylserine, which is taken as a measure of scramblase activity. Echinocytes show an enhanced rate of scrambling, whereas stomatocytes show a reduced rate, relative to normocytes. This phenomenon appears to correlate with enhanced and diminished micro-exovesicle shedding from echinocytes and stomatocytes, respectively. It is concluded that the rate of calcium-induced phosphatidylserine exposure (rate of lipid scrambling) in erythrocytes depends for a considerable part on the cells' ability to form microvesicles.  相似文献   

13.
Temporal progression of nuclear events of goat oocytes matured in vitro was studied by adding a specific inhibitor to the culture medium at different time points, to investigate protein synthesis requirements and its pattern during in vitro maturation. Goat cumulus-oocyte complexes (COCs) were matured in vitro in TCM 199, fixed at different time intervals and stained with orcein to assess nuclear changes. The germinal vesicle (GV) stage was found to be present at 0 h, chromosomal condensation stage was observed at 8 h, metaphase I at 12 to 14 h, and metaphase II was begun after 16 h of maturation and was nearly completed at 24 h. Protein synthesis inhibitor, cycloheximide, blocked oocyte maturation at germinal vesicle breakdown(GVBD), if added to the maturation medium between 0 to 4 h, suggesting that protein synthesis is required for GVBD. The transition from metaphase I to metaphase II was also protein synthesis-dependent, as observed when cycloheximide was used between 8 to 10 h of culture. When cycloheximide was added from 12 h of culture onwards, nuclear progression to metaphase II was progressively restored, but many chromosomal abnormalities were noted. Changes in the protein synthesis pattern were studied by radiolabeling of oocytes with [(35)S]-methionine at 0, 7, 12 and 24 h of culture, corresponding with GV, GVBD, metaphase I and metaphase II stages. A polypeptide of 28.1 KDa appeared as a major band at the GV stage, and its size decreased greatly and disappeared after the GVBD stage. Three new polypeptides (35, 36.5 and 39 KDa) appeared at GVBD and were detectable at metaphase II. In conclusion, the synthesis of proteins is required for the maintenance and transition of goat oocytes from GV to metaphase II during in vitro maturation.  相似文献   

14.
Profilin I was identified, by mass spectrometric sequencing and immunoblotting, as a component of purified Golgi cisternae from HepG2 cells. Binding to the Golgi was verified by indirect immunofluorescence in MT-1 cells showing that a fraction of profilin I colocalizes with TGN38, a marker of the trans-Golgi network (TGN). Studying the formation of constitutive exocytic vesicles at the TGN in a cell-free system demonstrated that cytosolic profilin I has no effect, while incubation of Golgi cisternae with a profilin I-specific antibody reduced vesicle formation by about 50%. Notably, the antibody displaces a fraction of the Golgi-bound dynamin II indicating that profilin I may indirectly promote vesicle formation by supporting the binding of dynamin II to the Golgi membrane. The impact of dynamin II on vesicle formation is demonstrated by incubating the Golgi with the proline-rich domain of dynamin II which concomitantly displaces dynamin II and inhibits vesicle formation. The data provide evidence that profilin I attaches to the Golgi apparatus and is required for the formation of constitutive transport vesicles.  相似文献   

15.
Summary We have sought to elucidate the spiculated shape of McLeod erythrocytes. Red cells from a normal donor and from a McLeod patient were incubated in phosphate-buffered saline containing 0, 0.05, or 0.1mm chlorpromazine at 0°C for 5 min. then glutaraldehyde-fixed, and examined by scanning electron microscopy. The normal red cells were biconcave disks in which chlorpromazine induced inward (negative) curvature: deep cupping (stomatocytosis) and multiple invaginations. The McLeod cells were mostly spiculated. Chlorpromazine at lower concentration converted them into biconcave disks and, at higher concentration, into stomatocytes. These results support the hypothesis that the spiculation of McLeod cells is the result of an imbalance of surface area between the two lipid leaflets of the membrane; that is, a bilayer couple effect.We determined the numerical density of intramembrane particles (IMP) in replicas of both fracture faces of red cells subjected to freeze fracture and rotary shadowing. These values were as follows (expressed per m2 of membrane ±sd): the normal protoplasmic fracture face had 2200±306 and the McLeod had 2300±250. The normal exoplasmic fracture face had 388±75 and the McLeod had 330±59. We conclude that there is no evidence for derangement of band 3, the principal protein in theIMP, in McLeod erythrocytes.  相似文献   

16.
Donepezil is used to treat symptomatically the Alzheimer's disease (AD). This drug is a specific inhibitor of the enzyme acetylcholinesterase (AChE), whose main physiological function is to hydrolyze the neurotransmitter acetylcholine. The main objective of this work was to study the effect of donepezil on human erythrocytes as AChE is present in its membrane. For this purpose, human erythrocytes and molecular model of its membrane built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. The latter correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. Our experimental evidences obtained from X-ray diffraction and differential scanning calorimetry (DSC) analysis indicated that donepezil was capable of interacting with both phospholipids. Fluorescence spectroscopy results showed a moderate increase in the fluidity of the hydrophobic tails of DMPC and isolated unsealed human erythrocyte membranes (IUM). On the other hand, results by scanning electron microscopy (SEM) and optical defocusing microscopy (DM) showed that the drug changed the normal biconcave shape of the erythrocytes inducing the formation of stomatocytes (cup-shaped cells). This effect was explained by the incorporation of donepezil molecules into the erythrocyte membrane and interactions with AChE.  相似文献   

17.
By optical microscopy, it has been shown that the addition of La3+ ions induced transformation in the shape of erythrocytes, their aggregation and fusion. After addition of La3+ erythrocytes transform into stomatocytes. It was found that the red cell shape recovered to discoid after addition of EDTA. Neither transformation of shape nor aggregation or fusion of erythrocytes could be detected after their treatment with glutaraldehyde. A possible mechanism and significance of the shape transformation in aggregation of erythrocytes is discussed.  相似文献   

18.
Following compression to 500 m in a simulated chamber dive, the blood samples of the six divers were all found to contain several types of non-discoid erythrocytes. Compression to this depth induced a pressure stress and sensitisation in a proportion of each divers' erythrocyte population. Long in vitro decompression procedures further stressed these red cells and resulted in additional morphological changes. The formation of stomatocytes was increased by an acidic-buffered fixative, conversely, an alkaline medium caused echinocytosis. Cell counts of each morphological cell type showed that as echinocyte stage III & IV numbers were reduced a simultaneous decrease in mean haemoglobin concentration occurred. Decompressions of blood samples for routine haematology should be at a rate of 3 m/min so as to be completed within four hours from venesection. Hyperbaric exposure time explicitly influence these red cell anomalies and development of a subclinical anaemia.  相似文献   

19.
This study presents evidence that chlorpromazine (CPZ) affects human cells and cell membrane molecular models. Human SH-SY5Y neuroblastoma cells incubated with 0.1 mM CPZ suffered a decrease of cell viability. On the other hand, phase contrast microscopy observations of human erythrocytes indicated that they underwent a morphological alteration as 1 μM CPZ changed their discoid normal shape to stomatocytes, and to hemolysis with 1 mM CPZ. X-ray diffraction experiments performed on dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of the major phospholipids present in the outer and inner sides of the erythrocyte membrane, respectively showed that CPZ disordered the polar head and acyl chain regions of both DMPC and DMPE, where these interactions were stronger with DMPC bilayers. Fluorescence spectroscopy on DMPC LUV at 18 °C confirmed these results. In fact, the assays showed that CPZ induced a significant reduction of their generalized polarization (GP) and anisotropy (r) values, indicative of enhanced disorder at the polar head and acyl chain regions of the DMPC lipid bilayer.  相似文献   

20.
Cytoplasmic pH and human erythrocyte shape.   总被引:1,自引:0,他引:1  
Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The mechanism of this transformation is unknown. The preceding companion study (Gedde and Huestis) demonstrated that these shape changes are not mediated by changes in membrane potential, as has been reported. The aim of this study was to identify the physiological properties that mediate this shape change. Red cells were placed in a wide range of physiological states by manipulation of buffer pH, chloride concentration, and osmolality. Morphology and four potential predictor properties (cell pH, membrane potential, cell water, and cell chloride concentration) were assayed. Analysis of the data set by stratification and nonlinear multivariate modeling showed that change in neither cell water nor cell chloride altered the morphology of normal pH cells. In contrast, change in cell pH caused shape change in normal-range membrane potential and cell water cells. The results show that change in cytoplasmic pH is both necessary and sufficient for the shape changes of human erythrocytes equilibrated in altered pH environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号