首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmids expressing bacteriophage T7 gene 1.2 or gene 10 DNA transform F plasmid-containing strains of Escherichia coli only at low efficiency, though they transform plasmid-free strains normally. The gene products T7 gp1.2 and T7 gp10 appear to be the toxic agents, and their effects are directed towards the product of the F pifA gene, PifA. T7 gp1.2 and gp10 are also the two targets of the pif exclusion system of F, and their synthesis normally triggers the abortive infection of T7 in pifA+ hosts. The properties of plasmids containing T7 gene 1.2 or 10 suggest that they can be used to study the molecular mechanisms of phage exclusion in model systems that avoid the pleiotropic dysfunctions associated with an abortive infection.  相似文献   

2.
The penetration of bacteriophage T7 DNA into F plasmid-containing Escherichia coli cells was determined by measuring Dam methylation of the entering genome. T7 strains that cannot productively infect F-containing cells fail to completely translocate their DNA into the cell before the infection aborts. The entry of the first 44% of the genome occurs normally in an F-containing cell, but the entry of the remainder is aberrant. Bypassing the normal mode of entry of the T7 genome by transfecting naked DNA into competent cells fails to suppress F exclusion of phage development. However, overexpression of various nontoxic T7 1.2 alleles from a high-copy-number plasmid or expression of T3 1.2 from a T7 genome allows phage growth in the presence of F.  相似文献   

3.
Mutants of bacteriophage T3 that lack gene 1.2 resemble wild-type phage T7 in that they are unable productively to infect F plasmid-containing cells of Escherichia coli. Pseudorevertants of a T3 gene 1.2 deletion mutant that have regained the ability to plate efficiently on male cells have been isolated and characterized. At least two mutations in the gene for the major capsid protein are necessary for these phages to bypass F-mediated restriction. One mutation serves to reduce the rate of synthesis of the capsid protein; a second mutation apparently alters an unknown property that is intrinsic to the free, or unassembled form of the protein. During the abortive infection of an F-containing host, synthesis of the wild-type capsid protein directly inhibits further phage development.  相似文献   

4.
Mutants of bacteriophage T7 that escape F restriction   总被引:7,自引:0,他引:7  
Mutants of bacteriophage T7 that escape F restriction have been isolated. Two mutations in gene 10, which codes for the capsid protein, and one mutation in gene 1.2 are required for these phages to grow on F-containing strains. The products of these two genes are the two targets of the exclusion system; the presence of either wild-type product results in an abortive infection. Phages that grow normally in male hosts still lead to membrane dysfunction and nucleotide efflux from the infected cell. This type of membrane damage and the abortive infection are therefore separable phenomena.  相似文献   

5.
A selection for mutants of Escherichia coli that survive coexpression of bacteriophage T7 gene 10 and plasmid F pifA has allowed the identification of a newly defined genetic locus, fxsA. fxsA is located at 94.1 min on the E. coli chromosome; the gene is monocistronic and non-essential for growth. Overexpression of fxsA is necessary for resistance to the toxicity of T7 gene 10 in the presence of pifA; the original mutant strain contains a promoter-up mutation, changing a G residue to the "invariant" T in the -10 hexamer of a sigma(70)promoter. This chromosomal mutation causes a 25-fold increase in the level of fxsA mRNA. The initiation codon of fxsA is shown to be UUG, and the FxsA protein is then deduced to consist of 158 amino acid residues. A similar mutant selection that demanded cell survival to a challenge of T7 gene 1.2 and pifA also resulted in the isolation of the identical promoter-up mutation that affects expression of fxsA. The increased levels of FxsA resulting from the promoter-up mutation allow phage T7 to avoid exclusion by the F plasmid, presumably by protecting the cell from premature death due to gene 10 or to gene 1.2 expression in the presence of the PifA protein.  相似文献   

6.
7.
Increased synthesis of the protein FxsA alleviates the exclusion of T7 in cells harboring the F plasmid. In contrast to wild-type or cells defective in fxsA, overexpression of fxsA+ allows T7 to form plaques at normal efficiency even though the burst size is reduced to about half that obtained on the isogenic F- strain. No defect in DNA synthesis was observed but late protein synthesis remains partially inhibited and a reduced level of cell leakiness, a prominent feature of F+ cells abortively infected by T7, persists. The FxsA protein is shown to be a cytoplasmic membrane protein. How T7 avoids exclusion by F in cells that exhibit increased levels of FxsA is discussed in terms of its membrane localization.  相似文献   

8.
The product of gene 1.2 of bacteriophage T7 is not required for the growth of T7 in wild-type Escherichia coli since deletion mutants lacking the entire gene 1.2 grow normally (Studier et al., J. Mol. Biol. 135:917-937, 1979). By using a T7 strain lacking gene 1.2, we have isolated a mutant of E. coli that was unable to support the growth of both point and deletion mutants defective in gene 1.2. The mutation, optA1, was located at approximately 3.6 min on the E. coli linkage map in the interval between dapD and tonA; optA1 was 92% cotransducible with dapD. By using the optA1 mutant, we have isolated six gene 1.2 point mutants of T7, all of which mapped between positions 15 and 16 on the T7 genetic map. These mutations have also been characterized by DNA sequence analysis, E. coli optA1 cells infected with T7 gene 1.2 mutants were defective in T7 DNA replication; early RNA and protein synthesis proceeded normally. The defect in T7 DNA replication is manifested by a premature cessation of DNA synthesis and degradation of the newly synthesized DNA. The defect was not observed in E. coli opt+ cells infected with T7 gene 1.2 mutants or in E. coli optA1 cells infected with wild-type T7 phage.  相似文献   

9.
Gene 1.2 of bacteriophage T7, located near the primary origin of DNA replication at position 15.37 on the T7 chromosome, encodes a 10,059-dalton protein that is essential for growth on Escherichia coli optA1 strains (Saito, H., and Richardson, C. C. (1981) J. Virol. 37, 343-351). In the absence of the T7 1.2 and E. coli optA gene products, the degradation of E. coli DNA proceeds normally, and T7 DNA synthesis is initiated at the primary origin. However, T7 DNA synthesis ceases prematurely and the newly synthesized DNA is degraded; no viable phage particles are released. The gene 1.2 protein has been purified to apparent homogeneity from cells in which the cloned 1.2 gene is overexpressed. Purification of the [35S] methionine-labeled protein was followed by monitoring the radioactivity of the protein and by gel electrophoresis. The purified protein has been identified as the product of gene 1.2 on the basis of molecular weight and partial amino acid sequence. We have found that extracts of E. coli optA1 cells infected with T7 gene 1.2 mutants are defective in packaging exogenous T7 DNA when such extracts are prepared late in infection. Purified gene 1.2 protein restores packaging activity to these defective extracts, thus providing a biological assay for gene 1.2 protein. No specific enzymatic activity has been found associated with the purified gene 1.2 protein.  相似文献   

10.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

11.
Bacteriophage K1F specifically infects Escherichia coli strains that produce the K1 polysaccharide capsule. Like several other K1 capsule-specific phages, K1F encodes an endo-neuraminidase (endosialidase) that is part of the tail structure which allows the phage to recognize and degrade the polysaccharide capsule. The complete nucleotide sequence of the K1F genome reveals that it is closely related to bacteriophage T7 in both genome organization and sequence similarity. The most striking difference between the two phages is that K1F encodes the endosialidase in the analogous position to the T7 tail fiber gene. This is in contrast with bacteriophage K1-5, another K1-specific phage, which encodes a very similar endosialidase which is part of a tail gene "module" at the end of the phage genome. It appears that diverse phages have acquired endosialidase genes by horizontal gene transfer and that these genes or gene products have adapted to different genome and virion architectures.  相似文献   

12.
Quantitative analysis of DNA replication, in E. coli B cells infected by methyl methanesulfonate-treated bacteriophage T7, showed that production of phage DNA was delayed and decreased. The cause of the delay appeared to be a delay in host-DNA breakdown, the process which provides nucleotides for phage-DNA synthesis. In addition, reutilisation of host-derived nucleotides was impaired. These observations can be accounted for by a model in which methyl groups on phage DNA slow down DNA injection and also reduce the replicational template activity of the DNA once it has entered the cell. Repair of alkylated phage DNA may be required not only for replication but also for normal injection of DNA.  相似文献   

13.
Folding of the major capsid protein of bacteriophage T4 encoded by gene 23 is aided by Escherichia coli GroEL chaperonin and phage co-chaperonin gp31. In the absence of gene product (gp) 31, aggregates of recombinant gp23 accumulate in the cell similar to inclusion bodies. These aggregates can be solubilized with 6 M urea. However, the protein cannot form regular structures in solution. A system of co-expression of gp31 and gp23 under the control of phage T7 promoter in E. coli cells has been constructed. Folding of entire-length gp23 (534 amino acid residues) in this system results in the correctly folded recombinant gp23, which forms long regular structures (polyheads) in the cell.  相似文献   

14.
The development of bacteriophage T7 was examined in an Escherichia coli double mutant defective for the two major apurinic, apyrimidinic endonucleases (exonuclease III and endonuclease IV, xth nfo). In cells infected with phages containing apurinic sites, the defect in repair enzymes led to a decrease of phage survival and a total absence of bacterial DNA degradation and of phage DNA synthesis. These results directly demonstrate the toxic action of apurinic sites on bacteriophage T7 at the intracellular level and its alleviation by DNA repair. In addition, untreated T7 phage unexpectedly displayed reduced plating efficiency and decreased DNA synthesis in the xth nfo double mutant.  相似文献   

15.
16.
The immunity (imm) gene of Escherichia coli bacteriophage T4.   总被引:3,自引:1,他引:2       下载免费PDF全文
M J Lu  U Henning 《Journal of virology》1989,63(8):3472-3478
The immunity (imm) gene of the Escherichia coli bacteriophage T4 effects exclusion of phage superinfecting cells already infected with T4. A candidate for this gene was placed under the control of the lac regulatory elements in a pUC plasmid. DNA sequencing revealed the presence of an open reading frame encoding a very lipophilic 83-residue (or 73-residue, depending on the unknown site of translation initiation) polypeptide which most likely represents a plasma membrane protein. This gene could be identified as the imm gene because expression from the plasmid caused exclusion of T4 and because interruption of the gene in the phage genome resulted in a phage no longer effecting superinfection immunity. It was found that the fraction of phage which was excluded upon infection of cells possessing the plasmid-encoded Imm protein ejected only about one-half of their DNA. Therefore, the Imm protein inhibited, directly or indirectly, DNA ejection.  相似文献   

17.
18.
19.
Superinfection exclusion by bacteriophage T7.   总被引:2,自引:2,他引:0       下载免费PDF全文
Only two of the early genes of bacteriophage T7 were found to play a significant role in exclusion of superinfecting bacteriophage T3 particles; genes 0.3 and 1. Protein synthesis by the preinfecting phage particle was not required for efficient exclusion. These findings are discussed with regard to the known functions of these genes during T7 development.  相似文献   

20.
The abortive infection of bacteriophage T7 in Shigella sonnei D2 371-48 is characterized by a premature inhibition of phage DNA replication and nucleolytic breakdown of all phage DNA. Mutations in T7 gene 10 which are recessive to the presence of the wild-type allele can alleviate the restriction of phage growth. Phage T3 productively infects S. sonnei D2 371-48, as does a T7-T3 hybrid phage that contains, in particular, a gene 10 of T7 origin. It is the presence of T3 DNA ligase that allows phage growth on S. sonnei D2 371-48, and this enzyme can also rescue wild-type T7 from the abortive infection. T7+ is therefore functionally ligase deficient during the infection of S. sonnei D2 371-48; this deficiency is a result of the expression of the phage capsid protein, but it is independent of the assembly of the protein into a procapsid or other morphogenetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号