首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
荧光相关光谱(fluorescence correlation spectroscopy,FCS)是一种通过监测荧光涨落从而获得单分子水平的分子扩散行为信息的技术。FCS高灵敏度的优点使得它已发展成为一种可以在活体外与活体内检测分子浓度、扩散系数、结合和解离常数等参数的有力工具。荧光互相关光谱(fluorescence cross-correlation spectroscopy,FCCS)是FCS技术的进一步发展,其大大扩展了FCS技术的应用范围。本文介绍了FCS及其衍生技术的原理及其在生物化学领域的应用。  相似文献   

2.
荧光相关谱技术及其应用   总被引:3,自引:1,他引:2  
基于对处于平衡态少量荧光分子集合的强度涨落进行时间平均的技术,荧光相关谱fluoreswceance correlation spectroscopy,FCS)技术最近已经应用于细胞环境过程的研究。FCS优秀的灵敏特性为我们实时测量许多参数提供了途径,而且具有快速的时间特性和高空间分辨率。测量的参数包括扩散速率、局部浓度、聚合状态和分子间的相互作用。荧光互相关谱(fluorescence cross-correlation spectroscopy,FCCS)进一步扩展了FCS技术的应用,包括在活细胞中的广泛应用。本文介绍了FCS技术的原理、实验装置及其应用。  相似文献   

3.
荧光寿命是指荧光分子在回到基态前在激发态停留的平均时间.本文发展了基于荧光寿命测量来定量分子内和分子间相互作用的方法:通过G碱基猝灭对于荧光寿命的影响定量DNA二级结构的形成;通过荧光共振能量传递(FRET)中荧光寿命的变化来定量分子间的相互作用.第一种方法巧妙利用了G碱基会猝灭临近的染料分子的性质,结合荧光寿命的变化,可以判断DNA二级结构的形成以及形成的比率. FRET是用于研究生物分子相互作用的一个重要手段.传统的FRET方法主要是基于强度的变化,但这种变化容易受到荧光表达水平变动、样品中分子扩散以及荧光串色的影响,因此经常存在着实验比较复杂和重复性差的问题.而基于荧光寿命的FRET研究则可以很好地克服上述缺点.通过检测供体荧光寿命的变化,我们能够方便快捷地判断是否发生FRET,并通过建立系统的数据分析方法,得到FRET的效率以及分子之间相互作用的信息.  相似文献   

4.
本文首次把ABC法应用于受体流动性测量中的膜表面受体荧光标记,利用FRAP(Fluorescence Recovery After Photobleaching)技术实现了细胞内吞过程中膜受体流动性变化的测量.实验用Con A—Biotin和Avidin—FITC(ABC法)标记巨噬细胞ConA受体,测量ConA刺激不同时间细胞膜表面受体的荧光强度、扩散系数和荧光恢复率的变化.结果显示ABC标记法适合于测量细胞内吞过程中膜表面受体的流动性变化,且具有较高的灵敏度高;巨噬细胞受ConA刺激后,膜表面ConA受体的扩散系数和荧光恢复率较静息状态时明显降低.  相似文献   

5.
本文利用多光子激发激光扫描显微镜的部分光路和探测器.建立了双光子荧光相关谱系统(Two-Photo Fluorescence Correlation Spectroscopy.简称TP-FCS)。利用TP-FCS系统观察到了“光子爆发”现象.实现了染料分子的双光子激发,测量出若丹明B染料分子在蔗糖溶液中的扩散系数。实验证明该系统具有操作简便、可靠性高,费用低廉等等点,可实现单分子检测。  相似文献   

6.
脂质体介导法转染肿瘤细胞效率的优化   总被引:2,自引:0,他引:2  
目的:研究优化影响脂质体转染效率的因素,以提高脂质体转染效率,为相关研究和应用提供参考.方法:以绿色荧光蛋白(GFP)作为报告基因,采用脂质体Lipofectamine 2000包裹pU6H1-GFP-FAK重组质粒转染Caco-2细胞,研究了细胞接种密度、DNA用量、脂质体与DNA的比例、脂质体-DNA复合物的形成时间、细胞与脂质体复合物的孵育时间、血清的有无及细胞的传代次数等因素对脂质体转染效率的影响.结果:2-5次细胞传代,2×105接种密度、4μg DNA用量、2.5:1的脂质体与DNA比例、30min脂质体-DNA复合物形成时间以及6h细胞与复合物孵育时间,转染效率最高.血清在本实验室条件下并不影响转染效率.结论:实验获得的优化条件可以明显提高脂质体对肿瘤细胞的转染效率,可作为有关研究或应用的参考.  相似文献   

7.
双光子激发荧光各向异性度的成像   总被引:2,自引:0,他引:2  
荧光各向异性度 (fluorescence anisotropy) 测量可以获得荧光分子的转动速度信息,进而了解分子质量、结构、以及与周边环境的相互作用情况 . 围绕一台双光子激发扫描荧光成像系统,通过改变外光路和图像记录与处理程序,从而实现了双光子激发荧光各向异性度成像,并针对一些典型样品和体系,展示了该方法的应用 . 实验中观察了 FITC 荧光分子、 FITC 结合的 CD44 抗体分子及与肿瘤细胞表面受体结合的 FITC-CD44 抗体分子 . 测量结果表明,不同分子质量、不同微观环境状态下的荧光分子,其各向异性度大小不同,在各向异性度图中能够被明显区分 . 荧光各向异性度成像能够定量测量样品微区的各向异性度值,并以二维图像的形式直观表达,是各向异性度测量与成像技术的良好结合 .  相似文献   

8.
以原代培养的大鼠前脂细胞为模型, 以2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)作为检测胞内pH(pHi)的荧光探针,测定不同生长因子刺激下胞内pH的变化,证明大鼠肾周前脂细胞质膜存在Na+/H+交换活性,胎牛血清(FCS)能快速激活Na+/H+交换, 导致pHi升高(约0.2 pH单位),并引起DNA合成.Ethyl-isopropyl-amiloride (EIPA)抑制Na+/H+交换与DNA合成.在无血清条件下,胰岛素不刺激DNA合成但引起细胞分化, 表现为胞内脂滴积累和3-磷酸-甘油脱氢酶(G3PDH酶)活性增强,同时激活Na+/H+交换活性导致pHi升高;EIPA既抑制胰岛素对Na+/H+交换的激活,也抑制G3PDH酶活性增强.结果证明:Na+/H+交换的激活不仅与大鼠前脂细胞增殖相关,同时也是细胞分化的早期事件.  相似文献   

9.
为验证砧木类型对甜樱桃多胺代谢和花芽休眠的影响,该研究以嫁接于不同砧木——矮化砧木‘吉塞拉6号’[Gisela 6,(G6)]和乔化砧木‘马扎德’(Mazzard)的甜樱桃品种‘罗亚理’为试材,通过田间观察确定嫁接于两种砧木的‘罗亚理’休眠期和花期,利用生物信息学、基因克隆、实时荧光定量、亚细胞定位和双分子荧光互补等手...  相似文献   

10.
藻胆蛋白复合物的合成及其分子内能量传递   总被引:3,自引:0,他引:3  
通过偶联剂3-(2-吡啶联巯基)丙酸N-羟基琥珀亚胺酯(SPDP)及改变配料比, 合成了两个R-藻红蛋白(R-PE)与C-藻蓝蛋白(C-PC)的复合物A和B.利用吸收光谱确定了分子内R-PE与C-PC的摩尔比为6∶1和2∶1. 通过荧光光谱, 观察到能量传递现象, 并计算出能量传递效率为63%和88%.证明分子内能量传递效率很高. 二硫苏糖醇(DTT)还原连接R-PE与C-PC的二硫桥键后, 能量传递被阻断. 这一现象进一步证明复合物中存在分子内能量传递.  相似文献   

11.
We have implemented scanning fluorescence correlation spectroscopy (sFCS) for precise determination of diffusion coefficients of fluorescent molecules in solution. The measurement volume where the molecules are excited, and from which the fluorescence is detected, was scanned in a circle with radius comparable to its size at frequencies 0.5-2 kHz. The scan radius R, determined with high accuracy by careful calibration, provides the spatial measure required for the determination of the diffusion coefficient D, without the need to know the exact size of the measurement volume. The difficulties in the determination of the measurement volume size have limited the application of standard FCS with fixed measurement volume to relative measurements, where the diffusion coefficient is determined by comparison with a standard. We demonstrate, on examples of several common fluorescent dyes, that sFCS can be used to measure D with high precision without a need for a standard. The correct value of D can be determined in the presence of weak photobleaching, and when the measurement volume size is modified, indicating the robustness of the method. The applicability of the presented implementation of sFCS to biological systems in demonstrated on the measurement of the diffusion coefficient of eGFP in the cytoplasm of HeLa cells. With the help of simulations, we find the optimal value of the scan radius R for the experiment.  相似文献   

12.
荧光相关光谱检测技术具有超灵敏(单分子)、快速(数秒至数分钟)和多功能(检测分子浓度、大小和相互作用)等技术优点,且无需反应物分离,因此有潜力成为一种新型均相、高敏荧光免疫检测技术,适用于在溶液中或单个活细胞内检测生物分子特性.本文首先介绍荧光相关光谱检测技术的原理和研究进展,然后结合项目团队自主研发的目前全球唯一一款可靠、易使用的桌面式荧光相关光谱仪,进一步探讨荧光相关光谱检测技术的具体实现和潜在应用.  相似文献   

13.
Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are powerful techniques to measure molecular interactions with high sensitivity in homogeneous solution and living cells. In this study, we developed methods for the detection of prion protein (PrP) using FCS and FCCS. A combination of a fluorescent-labeled Fab' fragment and another anti-PrP monoclonal antibody (mAb) enabled us to detect recombinant bovine PrP (rBoPrP) using FCS because there was a significant difference in the diffusion coefficients between the labeled Fab' fragment and the trimeric immune complex consisting of rBoPrP, labeled Fab' fragment, and another anti-PrP mAb. On the other hand, FCCS detected rBoPrP using two mAbs labeled with different fluorescence dyes. The detection limit for PrP in FCCS was approximately threefold higher than that in FCS. The sensitivity of FCCS in detection of abnormal isoform of PrP (PrP(Sc)) was comparable to that of enzyme-linked immunosorbent assay (ELISA). Because FCS and FCCS detect the PrP immune complex in homogeneous solution of only microliter samples with a single mixing step and without any washing steps, these features of measurement may facilitate automating bovine spongiform encephalopathy diagnosis.  相似文献   

14.
Two methods to combine fluorescence correlation spectroscopy (FCS) with modulated excitation, in a way that allows extraction of correlation data for all correlation times have been developed and experimentally verified. One method extracts distortion-free correlation data from measurements acquired with standard hardware correlators provided the fluorescence does not change systematically within the excitation pulses. This restriction does not apply to the second method, which, however, requires time-resolved acquisition of the fluorescence intensity. Modulation of the excitation in an FCS experiment is demonstrated to suppress triplet population buildup more efficiently than a corresponding reduction in continuous wave excitation intensity (shown for the dye rhodamine 6G in aqueous solution). Excitation modulation thus offers an additional means to optimize the FCS measurement conditions with respect to the photophysical properties of the dyes used. This possibility to suppress photoinduced states also provides a useful tool to distinguish additional processes occurring in the same time regime in the FCS measurements, as demonstrated here for the protonation kinetics of fluorescein at different pH. In general, the proposed concept opens for FCS measurements with a complete correlation timescale in a range of applications where a modulated excitation is either necessary or brings specific advantages.  相似文献   

15.
Protein aggregation is an essential molecular event in a wide variety of biological situations, and is a causal factor in several degenerative diseases. The aggregation of proteins also frequently hampers structural biological analyses, such as solution NMR studies. Therefore, precise detection and characterization of protein aggregation are of crucial importance for various research fields. In this study, we demonstrate that fluorescence correlation spectroscopy (FCS) using a single‐molecule fluorescence detection system enables the detection of otherwise invisible aggregation of proteins at higher protein concentrations, which are suitable for structural biological experiments, and consumes relatively small amounts of protein over a short measurement time. Furthermore, utilizing FCS, we established a method for high‐throughput screening of protein aggregation and optimal solution conditions for structural biological experiments.  相似文献   

16.
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.  相似文献   

17.
The theoretical basis of a new technique for measuring equilibrium adsorption/desorption kinetics and surface diffusion of fluorescent-labeled solute molecules at solid surfaces has been developed. The technique combines total internal reflection fluorescence (TIR) with either fluorescence photobleaching recovery (FPR) or fluorescence correlation spectroscopy (FCS). A laser beam totally internally reflects at a solid/liquid interface; the shallow evanescent field in the liquid excites the fluorescence of surface adsorbed molecules. In TIR/FPR, adsorbed molecules are bleaching by a flash of the focused laser beam; subsequent fluorescence recovery is monitored as bleached molecules exchange with unbleached ones from the solution or surrounding nonilluminated regions of the surface. In TIR/FCS, spontaneous fluorescence fluctuations due to individual molecules entering and leaving a well-defined portion of the evanescent field are autocorrelated. Under appropriate experimental conditions, the rate constants and surface diffusion coefficient can be readily obtained from the TIR/FPR and TIR/FCS curves. In general, the shape of the theoretical TIR/FPR and TIR/FCS curves depends in a complex manner upon the bulk and surface diffusion coefficients, the size of the iluminated or observed region, and the adsorption/desorption/kinetic rate constants. The theory can be applied both to specific binding between immobilized receptors and soluble ligands, and to nonspecific adsorption processes. A discussion of experimental considerations and the application of this technique to the adsorption of serum proteins on quartz may be found in the accompanying paper (Burghardt and Axelrod. 1981. Biophys. J. 33:455).  相似文献   

18.
Single-molecule photobleaching (smPB) technique is a powerful tool for characterizing molecular assemblies. It can provide a direct measure of the number of monomers constituting a given oligomeric particle and generate the oligomer size distribution in a specimen. A major current application of this technique is in understanding protein aggregation, which is linked to many incurable diseases. Quantitative measurement of the size distribution of an aggregating protein in a physiological solution remains a difficult task, since techniques such as dynamic light scattering or fluorescence correlation spectroscopy (FCS) can provide an average size, but cannot accurately resolve the underlying size distribution. Here we describe the smPB method as implemented on a home-built total internal reflection fluorescence microscope (TIRF). We first describe the construction of a TIRF microscope, and then demonstrate the power of smPB by characterizing a solution of Amylin (hIAPP) oligomers, a 37-residue peptide whose aggregation is associated with Type II diabetes. We compare our results with FCS data obtained from the same specimen, and discuss the advantages and disadvantages of the two techniques.  相似文献   

19.
Giant unilamellar vesicles (GUVs) have been widely used as a model membrane system to study membrane organization, dynamics, and protein-membrane interactions. Most recent studies have relied on imaging methods, which require good contrast for image resolution. Multiple sequential image processing only detects slow components of membrane dynamics. We have developed a new fluorescence correlation spectroscopy (FCS) technique, termed scanning FCS (i.e., SFCS), which performs multiple FCS measurements simultaneously by rapidly directing the excitation laser beam in a uniform (circular) scan across the bilayer of the GUVs in a repetitive fashion. The scan rate is fast compared to the diffusion of the membrane proteins and even small molecules in the GUVs. Scanning FCS outputs a "carpet" of timed fluorescence intensity fluctuations at specific points along the scan. In this study, GUVs were assembled from rat kidney brush border membranes, which included the integral membrane proteins. Scanning FCS measurements on GUVs allowed for a straightforward detection of spatial-temporal interactions between the protein and the membrane based on the diffusion rate of the protein. To test for protein incorporation into the bilayers of the GUVs, antibodies against one specific membrane protein (NaPi II cotransporter) were labeled with ALEXA-488. Fluorescence images of the GUVs in the presence of the labeled antibody showed marginal fluorescence enhancement on the GUV membrane bilayers (poor image contrast and resolution). With the application of scanning FCS, the binding of the antibody to the GUVs was detected directly from the analysis of diffusion rates of the fluorescent antibody. The diffusion coefficient of the antibody bound to NaPi II in the GUVs was approximately 200-fold smaller than that in solution. Scanning FCS provided a simple, quantitative, yet highly sensitive method to study protein-membrane interactions.  相似文献   

20.
Elson EL 《Biophysical journal》2011,(12):2855-2870
In recent years fluorescence correlation spectroscopy (FCS) has become a routine method for determining diffusion coefficients, chemical rate constants, molecular concentrations, fluorescence brightness, triplet state lifetimes, and other molecular parameters. FCS measures the spatial and temporal correlation of individual molecules with themselves and so provides a bridge between classical ensemble and contemporary single-molecule measurements. It also provides information on concentration and molecular number fluctuations for nonlinear reaction systems that complement single-molecule measurements. Typically implemented on a fluorescence microscope, FCS samples femtoliter volumes and so is especially useful for characterizing small dynamic systems such as biological cells. In addition to its practical utility, however, FCS provides a window on mesoscopic systems in which fluctuations from steady states not only provide the basis for the measurement but also can have important consequences for the behavior and evolution of the system. For example, a new and potentially interesting field for FCS studies could be the study of nonequilibrium steady states, especially in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号