首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SRPDB (Signal Recognition Particle Database) offers aligned SRP RNA and SRP protein sequences, phylogenetically ordered and annotated. This release adds three SRP RNA sequences (totaling 96 SRP RNA sequences) and 11 SRP protein sequences (a total of 39 protein sequences from SRP9, SRP14, SRP19, SRP21, SRP54, SRP68 or SRP72). Also downloadable are sample SRP RNA secondary structure diagrams, a three-dimensional model of the human SRP RNA, search motifs and software.  相似文献   

2.
The Signal Recognition Particle Database (SRPDB).   总被引:4,自引:1,他引:3       下载免费PDF全文
This release of the SRPDB (signal recognition particle database, http://pegasus.uthct.edu/SRPDB/SRPDB . html ) adds four SRP RNA sequences (a total of 99 SRP RNA sequences), 23 SRP protein sequences (a total of 63 protein sequences from SRP9, SRP14, SRP19, SRP21, SRP54, SRP68 or SRP72), and, for the first time, sequences of the alpha subunit of the eukaryotic SRP receptor and its homologous bacterial proteins (a total of 21 sequences). Sequences are offered phylogenetically ordered, annotated with links to the primary databases, and in aligned form. Also downloadable are sample SRP RNA secondary structure diagrams, three-dimensional models of representative SRP RNAs, and search motifs.  相似文献   

3.
The Signal Recognition Particle Database (SRPDB) at http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html and http://bio.lundberg.gu.se/dbs/SRPDB/SRPDB.html assists in the better understanding of the structure and function of the signal recognition particle (SRP), a ribonucleoprotein complex that recognizes signal sequences as they emerge from the ribosome. SRPDB provides alphabetically and phylogenetically ordered lists of SRP RNA and SRP protein sequences. The SRP RNA alignment emphasizes base pairs supported by comparative sequence analysis to derive accurate SRP RNA secondary structures for each species. This release includes a total of 181 SRP RNA sequences, 7 protein SRP9, 11 SRP14, 31 SRP19, 113 SRP54 (Ffh), 9 SRP68 and 12 SRP72 sequences. There are 44 new sequences of the SRP receptor alpha subunit and its FtsY homolog (a total of 99 entries). Additional data are provided for polypeptides with established or potential roles in SRP-mediated protein targeting, such as the beta subunit of SRP receptor, Flhf, Hbsu and cpSRP43. Also available are motifs for the identification of new SRP RNA sequences, 2D representations, three-dimensional models in PDB format, and links to the high-resolution structures of several SRP components. New to this version of SRPDB is the introduction of a relational database system and a SRP RNA prediction server (SRP-Scan) which allows the identification of SRP RNAs within genome sequences and also generates secondary structure diagrams.  相似文献   

4.
The SRPDB (signal recognition particle database) provides aligned SRP RNA and protein sequences, annotated and phylogenetically ordered. This release includes 82 SRP RNAs (including 22 bacterial and 9 archaeal homologs) and a total of 20 protein sequences representing SRP9, SRP14, SRP19, SRP54, SRP68, and SRP72. The offerings also include representative RNA secondary structure diagrams.  相似文献   

5.
Signal recognition particle (SRP) is a stable cytoplasmic ribonucleoprotein complex that serves to translocate secretory proteins across membranes during translation. The SRP Database (SRPDB) provides compilations of SRP components, ordered alphabetically and phylogenetically. Alignments emphasize phylogenetically-supported base pairs in SRP RNA and conserved residues in the proteins. Data are provided in various formats including a column arrangement for improved access and simplified computational usability. Included are motifs for identification of new sequences, SRP RNA secondary structure diagrams, 3-D models and links to high-resolution structures. This release includes 11 new SRP RNA sequences (total of 129), two protein SRP9 sequences (total of seven), two protein SRP14 sequences (total of 10), two protein SRP19 sequences (total of 16), 10 new SRP54 (ffh) sequences (total of 66), two protein SRP68 sequences (total of seven) and two protein SRP72 sequences (total of nine). Seven sequences of the SRP receptor alpha-subunit and its FtsY homolog (total of 51) are new. Also considered are ss-subunit of SRP receptor, Flhf, Hbsu, CaM kinase II and cpSRP43. Access to SRPDB is at http://psyche.uthct. edu/dbs/SRPDB/SRPDB.html and the European mirror http://www.medkem. gu.se/dbs/SRPDB/SRPDB.html  相似文献   

6.
The Signal Recognition Particle Database (SRPDB).   总被引:1,自引:0,他引:1       下载免费PDF全文
The signal recognition particle database (SRPDB) is located at the University of Texas Health Science Center at Tyler and includes tabulations of SRP RNA, SRP protein and SRP receptor sequences. The sequences are annotated with links to the primary databases. They are ordered alphabetically or phylogenetically and are available in aligned form. As of September, 1998, there were 108 SRP RNA sequences, 83 SRP protein sequences and 28 sequences of the SRP receptor alpha subunit and its homologues. In addition, the SRPDB provides search motifs consisting of conserved amino acid and nucleotide residues, and a limited number of SRP RNA secondary structure diagrams and 3-D models. The data are available freely at the URL http://psyche.uthct.edu/dbs/SRPDB/SRPDB.++ +html  相似文献   

7.
SRPDB (signal recognition particle database)   总被引:6,自引:1,他引:5       下载免费PDF全文
The signal recognition particle database (SRPDB) is maintained at the University of Texas Health Science Center at Tyler, Texas, and organizes SRP-related information about SRP RNA, SRP proteins and the SRP receptor. SRPDB is accessible on the WWW at the URL http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html . A mirror site of the SRPDB is located in Europe at the University of Göteborg, Sweden (http://www.medkem.gu.se/dbs/SRPDB/SRPDB.html ). This release of SRPDB adds 10 new SRP RNA sequences (a total of 117 SRP RNAs), four protein SRP19 sequences (a total of 15), seven new SRP54 (ffh) sequences (a total of 52), and eight sequences of the SRP receptor alpha subunit (FtsY) (total of 36). Sequences are arranged in alphabetical and phylogenetic order and alignments are provided which highlight base paired and conserved regions. SPRDB also provides motifs to find new sequences, a brief introduction to SRP function in protein secretion, numerous SRP RNA secondary structure diagrams, 3-D SRP RNA models, and recently obtained crystal structure PDB coordinates of the human SRP54m domain.  相似文献   

8.
Y Thomas  N Bui    K Strub 《Nucleic acids research》1997,25(10):1920-1929
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.  相似文献   

9.
10.
Protein SRP19 is an important component of the signal recognition particle (SRP) as it promotes assembly of protein SRP54 with SRP RNA and recognizes a tetranucleotide loop. Structural features and RNA binding activities of SRP19 of the hyperthermophilic archaeon Archaeoglobus fulgidus were investigated. An updated alignment of SRP19 sequences predicted three conserved regions and two alpha-helices. With Af-SRP RNA the Af-SRP54 protein assembled into an A. fulgidus SRP which remained intact for many hours. Stable complexes were formed between Af-SRP19 and truncated SRP RNAs, including a 36-residue fragment representing helix 6 of A. fulgidus SRP RNA.  相似文献   

11.
The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).  相似文献   

12.
The signal recognition particle (SRP) is a cytosolic ribonucleoprotein complex that guides secretory proteins to biological membranes in all organisms. The SRP RNA is at the center of the structure and function of the SRP. The comparison of the growing number of SRP RNA sequences provides a rich source for gaining valuable insight into the composition, assembly, and phylogeny of the SRP. In order to assist in the continuation of these studies, we propose an SRP RNA nomenclature applicable to the three divisions of life.  相似文献   

13.
The 54 kd protein subunit of the signal recognition particle (SRP54) has been shown to bind signal sequences by UV crosslinking. Primary structure analysis and phylogenetic comparisons have suggested that SRP54 is composed of two domains: an amino-terminal domain that contains a putative GTP-binding site (G-domain) and a carboxy-terminal domain that contains a high abundance of methionine residues (M-domain). Partial proteolysis of SRP revealed that the two proposed domains of SRP54 indeed represent structurally discrete entities. Upon proteolysis the intact G-domain was released from SRP, whereas the M-domain remained attached to the core of the particle. Reconstitution experiments demonstrated that the isolated M-domain associates with 7SL RNA in the presence of SRP19. In addition, we observed a specific binding of the M-domain directly to 4.5S RNA of Escherichia coli, which contains a structural motif also present in 7SL RNA. This shows that the M-domain contains an RNA binding site, and suggests that SRP54 may be linked to the rest of SRP through this domain by a direct interaction with 7SL RNA. Using UV crosslinking, we found that in an in vitro translation system the preprolactin signal sequence contacts SRP through the M-domain of SRP54. These results imply that the M-domain contains the signal sequence binding site of SRP54, although we cannot exclude that the G-domain may also be in proximity to bound signal sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.

Background

Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain.

Results

We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA.

Conclusions

The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.  相似文献   

15.
The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukaryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex. The availability of SRP components from a haloarchaeon offers insight into the structure, assembly and function of this ribonucleoprotein complex at saturating salt conditions. While the amino acid sequences of H.volcanii SRP19 and SRP54 are modified presumably as an adaptation to their saline surroundings, the interactions between these halophilic SRP components and SRP RNA appear conserved, with the possibility of a few exceptions. Indeed, the H.volcanii SRP can assemble in the absence of high salt. As reported with other archaeal SRPs, the limited binding of H.volcanii SRP54 to SRP RNA is enhanced in the presence of SRP19. Finally, immunolocalization reveals that H.volcanii SRP54 is found in the cytosolic fraction, where it is associated with the ribosomal fraction of the cell.  相似文献   

16.
The Signal Recognition Particle Database (SRPDB).   总被引:3,自引:2,他引:1       下载免费PDF全文
The Signal Recognition Particle Database (SRPDB) provides aligned SRP RNA and SRP protein sequences, annotated and phylogenetically ordered. The current release included 93 RNAs and 29 proteins representing SRP9, SRP14, SRP19, SRP21, SRP54, SRP68 and SRP72. The SRPDB can be downloaded and is accessible via the World Wide Web.  相似文献   

17.
The signal recognition particle (SRP) directs translating ribosomes to the protein translocation apparatus of endoplasmic reticulum (ER) membrane or the bacterial plasma membrane. The SRP is universally conserved, and in prokaryotes consists of two essential subunits, SRP RNA and SRP54, the latter of which binds to signal sequences on the nascent protein chains. Here we describe the solution NMR structure of a 28-mer RNA composing the most conserved part of SRP RNA to which SRP54 binds. Central to this function is a six-nucleotide internal loop that assumes a novel Mg2+-dependent structure with unusual cross-strand interactions; besides a cross-strand A/A stack, two guanines form hydrogen bonds with opposite-strand phosphates. The structure completely explains the phylogenetic conservation of the loop bases, underlining its importance for SRP54 binding and SRP function.  相似文献   

18.
19.
《The Journal of cell biology》1993,120(5):1113-1121
The 54-kD subunit of the signal recognition particle (SRP54) binds to signal sequences of nascent secretory and transmembrane proteins. SRP54 consists of two separable domains, a 33-kD amino-terminal domain that contains a GTP-binding site (SRP54G) and a 22-kD carboxy-terminal domain (SRP54M) containing binding sites for both the signal sequence and SRP RNA. To examine the function of the two domains in more detail, we have purified SRP54M and used it to assemble a partial SRP that lacks the amino-terminal domain of SRP54 [SRP(-54G)]. This particle recognized signal sequences in two independent assays, albeit less efficiently than intact SRP. Analysis of the signal sequence binding activity of free SRP54 and SRP54M supports the conclusion that SRP54M binds signal sequences with lower affinity than the intact protein. In contrast, when SRP(-54G) was assayed for its ability to promote the translocation of preprolactin across microsomal membranes, it was completely inactive, apparently because it was unable to interact normally with the SRP receptor. These results imply that SRP54G plays an essential role in SRP-mediated targeting of nascent chain-ribosome complexes to the ER membrane and also influences signal sequence recognition, possibly by promoting a tighter association between signal sequences and SRP54M.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号