首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Reactive oxygen intermediates and serine proteases are important components of host defense systems but can produce host injury if not tightly regulated. To determine whether these components can be coordinately controlled, we investigated regulation of superoxide generation by physiologically relevant concentrations of a) highly purified serum-derived antichymotrypsin (ACT), b) recombinant, wild-type ACT, c) rACT in which amino acid substitutions were engineered into the reactive center, and d) chymotrypsin/ACT complexes. These proteins and protein complexes inhibited superoxide anion production in neutrophils stimulated by f-Met-Leu-Phe, Con A, or PMA. In contrast, ligand-stimulated degranulation was not inhibited. In addition, using the recombinants and complexes, the region of ACT involved in inhibiting superoxide anion production was shown to be structurally distinct from the reactive center of the protein. The results indicate that functional domains of ACT corresponding to different biological activities can be decoupled and suggest that three species of ACT (intact ACT, a complexed protease/ACT form, and a partially denatured or proteolyzed form of ACT) that can exist in the microenvironment of an activated neutrophil may play an important role in regulating neutrophil function.  相似文献   

2.
Human alpha1-antitrypsin was prepared from fresh human plasma by (NH4)-SO4-precipitation, gel filtration, affinity chromatography on concanavalin A, ion exchange chromatography and isotachophoresis. Human urokinase (EC 3.4.99.26) (plasminogen activator from urine) with M, 46 000 and 36 000 was further purified from Urokinase Leo reagent preparation by gel filtration on Sephadex G-100 Superfine. The hydrolytic activity of urokinase on acetyl-glycyl-L-lysine methyl ester acetate (Ac-Gly-Lys-OMeAc) was inhibited in a strong time-dependent manner by alpha1-antitrypsin. Complex formation between enzyme and inhibitor could be demonstrated in crossed immunoelectrophoresis against anti-alpha1-antitrypsin and anti-urokinase serum as well as by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The latter method revealed the formation of 1:1 and 2:1 molar enzyme-inhibitor complexes.  相似文献   

3.
4.
alpha1-Antitrypsin (AAT) is a major circulating and tissue inhibitor of serine proteinases. As such AAT is thought to play an important role in limiting host tissue injury at sites of inflammation. There is now increasing evidence, however, that AAT may exhibit biological activity independent of its protease inhibitor function. In this study we compared the effects of native (inhibitory) and modified (non-inhibitory), e.g., polymerised and oxidised forms of AAT on LPS-induced human monocyte activation, in vitro. We found that native AAT inhibited LPS-stimulated synthesis and release of TNFalpha and IL-1beta mRNA and protein, respectively, but enhanced the release of the anti-inflammatory cytokine, IL-10. Similarly, polymerised and oxidised forms of AAT inhibited LPS-stimulated IL-1beta and TNFalpha. The effects of AATs were observed whether added prior to or following removal of LPS, suggesting that sequestration of agonist was unlikely to explain their biological effects. Furthermore, studies with neutralising antibodies indicated that generation of IL-10 was unlikely to be the mechanism responsible for the inhibitory effects of AATs. Thus, our data demonstrate for the first time that AAT exhibits anti-inflammatory activity in vitro that is unrelated to inhibition of serine proteases.  相似文献   

5.
6.
Individuals with alpha(1)-antitrypsin (alpha(1)-AT) deficiency are at risk for early-onset destructive lung disease as a result of insufficient lower respiratory tract alpha(1)-AT and an increased burden of neutrophil products such as elastase. Human neutrophil peptides (HNP), the most abundant protein component of neutrophil azurophilic granules, represent another potential inflammatory component in lung disease characterized by increased numbers of activated or deteriorating neutrophils. The purpose of this study was to determine the role of HNP in lower respiratory tract inflammation and destruction occuring in alpha(1)-AT deficiency. alpha(1)-AT-deficient individuals (n = 33) and healthy control subjects (n = 21) were evaluated by bronchoalveolar lavage. HNP concentrations were significantly higher in alpha(1)-AT-deficient individuals (1,976 +/- 692 vs. 29 +/- 12 nM, P < 0.0001), and levels correlated with markers of neutrophil-mediated lung inflammation. In vitro, HNP produced a dose-dependent cytotoxic effect on alveolar macrophages and stimulated production of the potent neutrophil chemoattractants leukotriene B(4) and interleukin-8 by alveolar macrophages, with a 6- to 10-fold increase in chemoattractant production over negative control cultures (P < 0.05). A synergistic effect was noted between HNP and neutrophil elastase with regard to leukotriene B(4) production. Importantly, the proinflammatory effects of HNP were blocked by alpha(1)-AT. HNP likely play an important role in amplifying and maintaining neutrophil-mediated inflammation in the lungs.  相似文献   

7.
Plasma was adsorbed with Al(OH)3 in a ratio of 8 : 2. The gel was washed free of entrapped plasma and antithrombin III and α1-antitrypsin eluted by repeated washing with 0.36 M ammonium phosphate, pH 8.1. The crude inhibitor preparation was subjected to chromatography on QAE-Sephadex A-50 at pH 8.0, followed by gel filtration on Sephadex G-200. In these two preparative steps the two inhibitors eluted together. However, they were separated by rechromatography on QAE-Sephadex at pH 7.4, following which they were recovered in highly purified form, α1-antitrypsin by passage through concanavalin-A-Sepharose and antithrombin III through heparin-Sepharose.  相似文献   

8.
9.
The inhibition of proteinases by human alpha1-antitrypsin   总被引:4,自引:0,他引:4  
  相似文献   

10.
Chemical modifications of human plasma alpha1-antitrypsin with reagents which modify lysyl residues (citraconic anhydride, acetic anhydride, formaldehyde and 2,4,6-trinitrobenzenesulfonic acid) and arginyl residued (1,2-cyclohexanedione) were examined with regard to their effect upon the elastase inhibitory capacity of the glycoprotein. 2,4,6-Trinitrobenzenesulfonic acid was employed to quantitate the remaining free amino groups (epsilon-NH2 groups of lysine) and the extent of modifications. Amino acid analysis was utilized in the same capacity for the guanidino groups of arginyl residues. The elastase inhibitory capacity of alpha1-antitrypsin was destroyed following trinitrophenylation, citraconylation and acetylation. Circular dichroism of the native and modified derivatives revealed major changes in conformation following trinitrophenylation and citraconylation while CD profiles of acetylated and reductively methylated derivatives differed from that of the native profile considerably less. Reductively methylated alpha1-antitrypsin retained its elastatse inhibitory capacity. The reaction of 1,2-cyclohexanedione with alpha1-antitrypsin did not effect in a loss in inhibitory capacity. Gel filtration studies of native and modified alpha1-antitrypsin on Sephadex G-100 demonstrated an increased molecular weight presumably through molecular aggregation, in the citraconylated and trinitrophenylated derivatives, but not in the cases of the other derivatives. Based upon these studies and previous investigations of our laboratory, it was concluded that (1) alpha1-antitrypsin is a lysyl inhibitor type (i.e., the reactive site is a Lys-X bond), (2) its interaction with elastase follows a pattern similar to trypsin and chymotrypsin, and (3) the positively charged epsilon-NH2 group of lysine is essential for the maintenance of elastase inhibitory capacity.  相似文献   

11.
The elastase inhibitory capacity of human plasma α1-antitrypsin was determined following chemical modification of lysyl and arginyl residues. Modification of the guanidino group had no effect upon the inhibitory activity, while acetylation, citraconylation, and trinitrophenylation of the lysyl ?-amino group brought about a loss of elastase inhibitory capacity.  相似文献   

12.
Alpha1-Antitrypsin was isolated from rabbit plasma by salting out with (NH4)2SO4 followed by ion-exchange chromatography either on DEAE-Sephadex or DEAE-cellulose (each at pH8.8 and 6.5), and affinity chromatography on Sepharose-Cibacron Blue and Sepharose-concanavalin A. The protein thus obtained was homogeneous during crossed immunoelectrophoresis by using an antiserum to whole rabbit plasma, but it migrated as two broad bands when electrophoresed in alkaline polyacrylamide gels. Under optimal loading conditions, two or three subcomponents could be distinguished in each band. The two major forms of rabbit alpha1-antitrypsin, designated components F and S, were separated by preparative polyacrylamide-gel electrophoresis, and some of their physico-chemical properties were established. Both forms reacted with trypsin at a molar ratio of 1:1. Their elution volumes from a Sephadex G-200 column were identical, corresponding to a mol.wt. of 58000; however, some heterogeneity was observed after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoelectric focusing in polyacrylamide gel in a pH 4-6 gradient revealed a multiple-band pattern for each form in the range of pH4.4-4.9. The two forms of rabbit alpha1-antitrypsin possessed the same N-terminal amino acid (glutamic acid) and had very similar amino acid and carbohydrate compositions.  相似文献   

13.
The solution conformation of alpha 1-antitrypsin from human blood plasma was studied by the circular dichroism (CD) probe. The CD spectra revealed in this glycoprotein approximately 16-20% of alpha-helix, the rest of the main polypeptide chain possessing the pleated sheet (beta) and the aperiodic structures. The conformation was stable between pH 4.7 and 8.8. Reversible change in conformation was observed at pH 10.3, and more dratic denaturation occurred at pH 11.6. The environment of the side chain chromophores was strongly affected by acid at pH 2.5, whereas the main chain conformation was changed slightly. A drastic change in the CD spectra, indicating denaturation, was observed in 3.5 M guanidine hydrochloride. Sodium dodecyl sulfate was effective in disorganizing the tertiary structure and in enhancing the helix content. The phenylalanine band fine structure was observed in the native protein and also after denaturation with acid, guanidine hydrochloride and sodium dodecyl sulfate.  相似文献   

14.
The inhibition of O2- production by serine protease inhibitors such as chloromethyl ketone derivatives, has been used as evidence to indicate that protease activity is essential for the production of O2- by neutrophils. However, chloromethyl ketones are potent inhibitors of sulfhydryl groups. This study demonstrates that chloromethyl ketones inhibited non-protein sulfhydryl groups as well as O2- production by human neutrophils stimulated with phorbol myristate acetate (PMA). Their inhibition of O2- production could be prevented by reduced glutathione. The results suggest that inhibition of O2- production by chloromethyl ketones is largely due to their inhibition of sulfhydryl groups.  相似文献   

15.
A 1:1 stoichiometry of inhibition of human pancreatic elastase 2 by human α1-antitrypsin has been determined. The molar binding ratio was calculated using the results of a titration curve for elastase 2 inhibition by α1-antitrypsin, an experimentally determined concentration of active sites in human elastase 2, and an extinction coefficient calculated from ultracentrifugation studies using interference optics.  相似文献   

16.
We have reported that CD54 on eosinophils is involved in eosinophil degranulation. However, the role of CD54 in eosinophil and neutrophil superoxide production is still uncertain. We assessed the effect of CD54 on eosinophils and neutrophils in recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF)- or phorbol myristate acetate (PMA)-induced superoxide production through CD18. Anti-CD54 monoclonal antibody attenuated leukocyte aggregation and superoxide production of rGM-CSF- or PMA-stimulated neutrophils and PMA-stimulated eosinophils. Anti-CD18 monoclonal antibody or theophylline attenuated superoxide production of eosinophils and neutrophils stimulated by either stimuli. Flow cytometric analysis demonstrated CD54 expression on freshly isolated neutrophils but not on freshly isolated eosinophils. CD54 newly expressed on eosinophils reached its peak expression 30 min after PMA stimulation. The increase in CD18 and CD54 expression on neutrophils caused by rGM-CSF stimulation was partially inhibited by theophylline. These data demonstrated that CD54 and CD18 interaction of eosinophils or neutrophils is involved in superoxide production and that the inhibition of superoxide production by theophylline may be at least partly due to the inhibition of CD54 and CD18.  相似文献   

17.
Human plasma α1-antitrypsin (α1-AT) was labeled with either 3H [3H-labeled NANA (N-acetyl-neuraminic acid)-7] residues in the carbohydrate moiety) or 14C (?-N-methyl-[14C]lysyl residues in the protein backbone) or with both isotopes in the corresponding residues. After intravenous injection into rats of the doubly labeled partially (50%) desialylated (methyl-[14C]·[3H]NANA-7)-α1-AT, the rates of disappearance from the plasma of both isotopes were very rapid and yielded essentially the same circulatory half-life of 5 min. The rapid disappearance of the doubly labeled glycoprotein from the plasma was accompanied by concomitant fast and equal accumulations of 14C and 3H in the liver which constituted about 70% of the administered dose 15 min after the injection. The asialo (methyl-[14C])-α1-AT·trypsin complex or methyl-[14C]-α1-AT·trypsin complex had a plasma survival time (45 min) that was intermediate between methyl-[14C]-α1-AT and its desialylated derivative. These complexes were removed from the plasma by the liver (45% of the injected dose 60 min after injection), although not as rapidly as asialo (methyl-[14C])-α1-AT. Blockade of the reticuloendothelial (Kupffer) cells by simultaneous injection of heat-denatured albumin inhibited the liver uptake of the inhibitor·trypsin complexes but not that of the uncomplexed asialo α1-AT. Radioactive ?-N,N-dimethyllysine, ?-N-monomethyllysine, methionine, choline, and betaine were separated and identified from the trichloro-acetic acid-soluble fraction of rat livers 25 min after injection of asialo (methyl-[14C])-α1-AT.  相似文献   

18.
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate.  相似文献   

19.
alpha1-Antitrypsin (AAT) is a major circulating serine proteinase inhibitor in humans. The anti-proteinase activity of AAT is inhibited by chemical modification. These include inter- or intramolecular polymerisation, oxidation, complex formation with target proteinases (e.g., neutrophil elastase), and/or cleavage by multi-specific proteinases. In vivo, several modified forms of AAT have been identified which stimulate biological activity in vitro unrelated to inhibition of serine proteinases. In this study we have examined the effects of native and polymerised AAT and C-36 peptide, a proteolytic cleavage product of AAT, on human neutrophil activation, in vitro. We show that the C-36 peptide displays striking concentration-dependent pro-inflammatory effects on human neutrophils, including induction of neutrophil chemotaxis, adhesion, degranulation, and superoxide generation. In contrast to C-36 peptide, native and polymerised AAT at similar and higher concentrations showed no effects on neutrophil activation. These results suggest that cleavage of AAT may not only abolish its proteinase inhibitor activity, but can also generate a powerful pro-inflammatory activator for human neutrophils.  相似文献   

20.
A new allele of alpha1AT is described. By isoelectric focusing, the microheterogeneous pattern of the variant was similar to but more cathodal than that of Pi N. This allele has therefore been tentatively designated PiNhampton(Nham). Further examination revealed that the minor bands of Nham are indistinguishable from the major bands of Z by isoelectric focusing, and a careful family study was necessary to clearly define the proband's phenotype. Pi Nham was found in association with M1, S, and Z, but to date its possession is not apparently related to clinical disorders or reduced serum levels of alpha1AT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号